Nucleus

PLUS

Reference Manual

0001026-001 Rev.104

Copyright (c) 2002
Accelerated Technolo
=, = zy
%é Embedded Systems Division
== ;
= é of Mentor Graphics
— =

720 Oak Circle Dr. E.
NEED in an RTOS. Royalty Free. Mobile, AL 36609
(251) 661-5770

=

Il Yo

=

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

Gra nlg_!;

ii

Preface

Related Documentation

Nucleus PLUS Internals, by Accelerated Technology, describes, in considerable detail,
the implementation of the Nucleus PLUS kernel.

Style and Symbol Conventions

Program listings, program examples, filenames, menu items/buttons and interactive
displays are each shown in a special font.

Program listings and program examples - Couri er New
Filenames - COURI ER NEW ALL CAPS

Interactive Command Lines - Couri er New, Bold
Menu Items/Buttons — Times New Roman Italic

Trademarks

MS-DOS is a trademark of Microsoft Corporation
UNIX is a trademark of X/Open
IBM PC is a trademark of International Business Machines, Inc.

Additional Assistance
For additional assistance, please contact us at the following:

Accelerated Technology
720 Oak Circle Drive, East
Mobile, AL 36609
800-468-6853
334-661-5770
334-661-5788 (fax)

support@acceleratedtechnology.com
http://www.acceleratedtechnology.com

Copyright (©) 2002, All Rights Reserved.
Document Part Number: 0001026-001 Rev. 104
Last Revised: May 20, 2002

iii

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

iv

Contents

Chapter 1 - INtrodUCHION.cocuiiiiieiieciieiieeie ettt ens 1
ADOUL NUCIEUS PLUS ..ottt et st esseeseeneeenne e 2
ReEal-Time APPLICALIONS.eevereieiietieieeiesiesteesteeteetesttesttes e eseesaessaesseesseesesnsesseenseenseansenns 2
Why Nucleus PLUS 18 NE@ded.......c.ocveiiiiieieiieiiesierit ettt st ens 2

Chapter 2 — Getting Startedcccvveeeiiieeiiieeie e 5
Application DeVEIOPMENL..........ccuieiiirieiieiieri ettt ae e s e seessesneesneesseesseenseans 5
Application DEVEIOPMENL..........ccieiiiiieiieiieriieit ettt ettt ae e sreesseessesaesneesseenseenseans 6
Installing Nucleus PLUS ...t 6
How to Use Nucleus PLUS ...t 7
Application INTtIaliZAtIONeeieiieciieiieeie ettt bee e e ebe et aeeaeeennas 8
Target System COonsSIAETAtiONSco.ueruieriieriirieiie ettt ettt e sbeenee e 9
Configuration OPLIONScevuieiiriiiieiieie ettt ettt sttt ettt et e beeeaeeseesbeenaee 9
System INTAlIZAtIONeeeiieiiieeiiecie ettt aee et e et eebeeenbeeentaeenseennses 10
IMEMOTY USAZEveeeuvieeiiieeiieeite ettt st st e st set e st e sttt e st e e sateesabeesbteesabeesabeesateebaeananeanes 10
EXecution TRICAAScveveieiieiieie ettt ettt ne e seeenes 13

INItIALIZALION. ..e.tieiteie ettt sttt e e e st e st e bt eneeeneense e seenseenteenneenean 13
SYSEIM EITOT ...ttt ettt ettt et st e e beeennee s 13
SChedUIING LOOP. ... iiiiieiieii ettt ettt e e esaeeseenseenseas 13
TASK -ttt ettt b et et eat e bt neas 13
Signal HANAIETcccviiiiieeiii ettt aeestaeessbeesaeensaeeneee s 13
USET ISR ettt et ettt ettt ae 14
ISR ettt et b e h e ettt be bt b e bt eh e et et et e et e bt neeneeneeneenes 14
HISR ettt et h et a e st et e e et e bt e bt et e e et e ne et et e te bttt eneeneenes 14

Chapter 3 — Task Control..........cceeeciieeiiieeieeciie e 15
IIEEOAUCTION ..ottt ettt sttt et et ebeenaeebeas 16
TASK STALES ...ttt ettt ettt et st st sb ettt et eaee e nneas 16

PrEOIMPLION. ..eutieeiie ettt ettt et e et e et e e tb e e bt e e tbeesaeessbeesaeessseensseensseensaeenns 16
] T 1T 11§ o USRS 16
TIME STCINE .eevvveiieiieie ettt ettt ettt e et e s aesaee b e enseesaeeseesseeseenseenseenaessaensenn 17
DYNAMIC CIEAION.eeuvieiiieeieeiieiieieeieeteseestesteesteeteeteessessaesseeseessesnsesssessnesseenseensennes 17
DCLEIMUNISINeeiiieeieiiieie ettt ete et et este et e e e e et e eseeseesseenseessessaesseeseenseensesnnesnns 17
StACK CHECKINGcuvieiiieiieeiietieteesie ettt ettt ettt ettt e et e taesseesseenseensesnnesseenseenseans 17
Task INFOrMALIONocveeriieiieieeie ettt et e e nre e e enaesseenseas 17

Nucleus PLUS Reference Manual

53 510251 2SRRI 17
Function REfEIENCE......c.eiiuiiiiiiiiieeee et 19
NU_Change PreempPlioncooueeierierienienieeie ettt s sbe e e s 20
NU _Change PriOTityc.ccceeciecieriieeiesiesienteeieeteeeeseeesseeteesseeseseaesseesseesseenseensesnnennns 21
NU_Change Time SHCE......cccerierieiieiieiieeieriteie ettt et ettt eaesaeseaesseesseenseenneenns 22
NU _CheCK StACKvieuiiiieeiieiieieeie ettt ettt et e eeaeseaesseesseenseensesnneens 23
NU _Create TasKc.cccveeieiieiieieee ettt ettt teseaessaesseesseenseenseenneenns 24
NU_Current Task POINLETcceeeieeeieiieiierieie ettt s enee e e 26
NU _DEIEte TaSK ..ocuvieiieiiieiieciieiieie ettt ettt e s sasesenesneesneenseenes 27
NU_Established Tasks........ccceeierieiiiiienieniee ettt 28
NU_REHNQUISH ..ot 29
NU _RESEE TASK ...ttt ettt e s 30
NU _RESUME TaSK...ccuiiiiiiiiiiiieeie ettt st st 31
INU _SIEEP -ttt ettt ettt ettt ettt e et e e s bt e sbee s bt e bt emaeemtesaeenae 32
NU_SUSPENd_ TaSK ...cueeeiieiieiieiieeie e s 33
NU_Task INfOrmation..........ccceecueeeueeierieniiesieeie et seesie et ete e seeesseesseeseeneesnnesns 34
NU _Task POINEETS...c..cooiiriiriiriiniiieeteeere ettt 37
NU_Terminate Taskccceoeeiriiiiiiniereeeeeeteee et 38
Chapter 4 — Dynamic MEMOTYccceeriieriienieeiieniieeieeniee e eniee e eieeeaee e 39
INErOAUCLION ..ottt ettt 40
SUSPEIISIONeeveiieteett et e e st et e bt e et ettesetestee s e enseessessaesseesseenseanseessesssenseenseensennsessaenseesnns 40
DYNAMIC CIEAIONe.uvetieiieiieteeteeieetterieeteeeteeaesteesseesseeseesesseesseesseesseenseansesssesseenseensens 40
DICLETIIIIISIIL <.ttt ettt ettt sttt et et e e be st s besbeebeeaeenbennens 41
Dynamic Memory Pool INfOrmation.............ccueecuieiieeeiieiiieeiie e e 41
Function REfEIreNCEec..eiiuiiiiiii ittt 41
NU_AIOCAtE. IMEIMOTY ..ottt sttt ettt e sttt st sbeesbeenbeenee e e eaee 42
NU_Create Memory Pool ..o 44
NU_Deallocate MEMOTYccueertierieeieiieitiesteenteeie ettt estee et seaeseeeseeesbeenaeeeeeneeeaee 46
NU _Delete Memory Pool ..o e 47
NU_Established Memory POOIS.........cccoeiieriiiiiiiieieeieieeeeeie e 48
NU_Memory Pool INformationccecceeeeiieiiienienierieieeeeie et 49
NU_Memory Pool POINLETScccverieiieriieiieie ettt st enes 51
Example SOUICe COde.......c.ooiuieiiiiieienieeeieeie ettt ettt st et e et ensesnaessaeenees 52
Chapter 5 — Partition ME@mMOTYcccuieruieeiieriieeiieiie e see e sve e 57
INEFOAUCLION ..ottt bbbttt et st 58
SUSPCIISION ...eeteiieteenie et ete et et et ente et e ssaesseenseensesasesseesseenseenseensesssanseenseensennsessnenseenss 58
DyNAMIC CIEAtIONeeitiereieiieie et eteetieste et eteetesaestteseeesseeseeneesseesseesseenseensesnsesnnesnnes 58
DIELETIIIIISIIL ..ttt ettt st ettt ettt be bt sbe b eseeneeneen 58
Partition INfOrmationcooeoiieiiiiiiieiie e 59
Function REfEIENCEcc.eeiuiiiiiiiiieee et 59
NU_Allocate Partitionoceerieriiriiiieiieeiecee et s 60
NU_Create Partition. POOL.......cccoooiiiiiiiiiiiiiiee e 62
NU_Deallocate Partition..........ccceereerieriirierieniienieeieeeeie sttt st s 64
NU_Delete Partition. POOL..........cocuieiiiiiiieiieieeie e 65
NU_Established Partition PoOIS..........cccoevieiiriieienieieeee et 66
NU_Partition_Pool Informationcccccerierieiieiieieeieeeeeeee e 67

vi

Preface

NU_Partition POl POINEELSooueiiiiiiiiiiiiieieeiiesieeeeee e 69
EXample SOUICE COUEoooiuieeiiiiiieeiie ettt et veesete e saeessbeessaeesebeeseseessseensneenes 70
Chapter 6 - MailDOXESccccviieiiieeiiiieeiieeeiee et et e eteeeeeeeeereeeereeeseaeeenenes 75
IEEOAUCTION ..ottt st sttt et sbee b ebeas 76
SUSPEIISION ...t eetietieeiie ettt ettt estee et e ette et e ebeesstaeesseesaseeesseesssaeasseesssaeasseessseensseessseensseenn 76
BIrOAACAST ...c..eiteitie ettt 76
DYNAMIC CIrEAtION.eeuvieiiieiieeiieiiete et etesteste st e te e st esteeseessaesseeseesseensesssessnesseenseensennes 76
DIELETIIIIISIIL ...ttt ettt bbbt ettt bbbt bt et enn e 76
Mailbox INfOrmMAationcceeueiuiiiiiiiiiiiiereeet ettt e 77
FUnction REfEIEICE.couiviiiiiiiiriiiiiieeer ettt 77
NU_Broadcast TO MailbDOXcccueeeuiriiiiieiieniieiieieeieete et see st seesaeeeeesessnesseesseenseens 78
NU_Create MailbOX ...cc.eecveiieiieiieriieiiete et eieste st eieeteeaesaessaesseesseeseenseessesssesseenseens 80
NU _Delete MailbOX ...c..eeuieiiiiiiiiiriienieeteee ettt sttt et saee e 82
NU_Established MailbOXEScccerieriiiriiiiiiiiniienieeieeeee sttt neeens 83
NU_Mailbox INnformation.........cccceevieriiiiiiiiiienieseeeeee ettt 84
NU_MailboX POINLEIS. ...ccueeitieiiieiieiieie ettt sttt et ettt saee e 86
NU_Receive From MailbDoXcccoeiieriiiiiiiiiiiiiecieieeeee st 88
NU _RESEt MaTIDOXeuieiiieiiieiiieicee ettt ettt et e b et ens 90
NU_Send TO MaIlDOX ..ccuveivieiiieiieiieieeie et eieseese et etesae e saesee st esseenseesseensessaenseens 91
EXample SOUICE COAEooouiiriiiiieiieieeie ettt ettt seae s e seenseeseenneees 93
Chapter 7 “QUEUESeevieeiiieiieeiie ettt ettt ettt et eereeteesaaeebeeseaeenseas 97
INEFOAUCLION ...ttt et a e sttt et aen 98
IMEESSAZE SIZE ..evvvenvieneieneieiieeieeettesteeteestestessaesseeseenseensesstesseenseenseanseessesssenseeseensesnsesnnennns 98
SUSPEIISIONuvteutieieeetietiett et eeteetestee bt eseenaessaesseesseenseenseessanseenseenseensesnsesseesseenseensennnenes 98
BIrOAdCastcveiiiiiiieiietee e ettt sttt 98
DYNAMIC CIEAtION.eeutieiiieeieeiieiieteeieeteseesee st este e st esteessessaesseeseesseensesssessnesseenseensennes 98
DELEIMUNISIN ...ttt ettt se et et et e et s b e e sb e e bt enbeenaesaeesae 99
Queue INFOrmMation..........c..oiiiiiiii e e e e e e et et ean 99
Function REfEIrENCE.oouiiiiiiiiieiieiee e 99
NU_Broadcast TO QUEUE.........coouiiiiiieiieiieieeteet ettt e 100
NU_Create QUEUERooueeiiieiietieie ettt et ettt st see ettt et ebe et e nte e e eneesseesaees 102
NU _DeEIete QUEUER ..ottt ettt sttt ettt s b et e be e 104
NU_Established QUEUEScccieriieiieieeieiieieeie ettt ettt snaeseees 105
NU_Queue Information..........cceevieriieieeienierieeie ettt et esse e enseseaeseees 106
NU_QUEUE POINLETS ...cueiiieiieiieie ettt ettt et enteeseesseenseenseensesnsesnnes 109
NU_Receive From QUEUEcocuieiieiieieeiesiieiieie ettt ssee e seenseennes 110
NU_RESEt QUEUE ...ccuviiiiiiiiieiiiieeteeriteeete ettt ettt sb e st e st e st e sbeesaees 113
NU_Send To Front Of QUEUE.........cceevieriieiieiieie ettt 114
NU_Send TO QUEUEoouieiiiiiiieiieeitete ettt ettt e et seee e 116
EXample SOUICE COAEiiiuiiiiiiiiiecieecieeete ettt ettt sve e re e sv e e ssbeesnaeesebeeseseeeneas 118
CRAPLET 8 = PIPES..iiiiiiieiiieeiiie ettt ettt ae e e aae e s e s e eeaaee e 123
INEOAUCTION ...ttt ettt e st e e s teeeabeesabeesabeesnseeenseesnsaesnseesnseennseenn 124
IMEESSAZE SIZE ..ttt ettt ettt ettt ettt e a e b e b et e st satesaeesbe e te et eateeaeenbeens 124
SUSPEIISION ...t eueieeeieetieeteeetteeteeetteeteeeteeesteesateeasseesssaeasseesssaensseessseensseesssensseassennsens 124
BIOAACASTeieiieeiiieiieeciee ettt sttt st st e e e st eeenbeesteeenbeeenbaeenbaeetaeenrae s 124
DyNamiC CrEatiON.......eevuvierreeriieeieerieeeteesteesveestreesaeestaeessseesseeessseessseessseensseessseensees 124

Nucleus PLUS Reference Manual

DELEIMUNISIN ...ttt sttt et ettt et et et e bt esbe e beenaeseeesae 125
Pipe INFOrMAtioNceecuiiiiieeiie ettt s eetbe e sebeessbeesnbaesnnee e 125
FUunction REfEIENCE......ccueiiiiiiiiiiieieee et 125
NU_Broadcast TO Pipe......cccuerierieiiiiieiie ettt sttt sseenseeneeens 126
NU _Create PiPe...cceecieiieiieieeie ettt ettt ettt te e saesaeesseeasenseensesnsensnens 128
NU _DEIELE PiIP@...icuiieiiieiieiiiiiieieeeeeiesite sttt ettt seeaesaesseesseeseenseensesssenseens 130
NU_EStabliShed PiPescceecveiieiieiieiieit ettt sttt sseeneeens 131
NU_Pipe Informationccceceeiieiiiiiieiieiieseese ettt saeseesteesse e eaeeeesseesseeneeens 132
NU _PiIPE POINLELS ...oovvieivieiiieiieeiieciiecieeie ettt et e it ettt steseaeseaesseesseenseenseessesseenseens 134
NU _Receive From Pipe......ccoooiioiiiiiiienieiieieeieeeeieeee et 134
NU _RESEE PIPE ..ottt sttt st saeenaeens 137
NU _Send To Front Of Pipecccooiiiiiiiiiiiiiiiieeeeee e 138
NU_Send T PiPe..cciieiiiiiiiiiieiieree ettt sttt e 140
EXample SOUICE COAE.......oiiiiiiiiiiiiieeieeeite et stee et et et e ste e st e s beeseaeessbeesnaeessseensseenns 142
Chapter 9 - SEMAPhOTESccueiiiiiiiieiieee e 147
INEEOAUCTION ...ttt ettt st ettt aeesbeenaees 148
SUSPEIISION ..e.tieiieeiiieeeiie et eette ettt ettt e stteestee e taeesaeessbeesee e sseenseeessseanseeansseenseeansneenseean 148
DRAALOCK ...t 148
Priority INVETSIONcvieiieiieieciieieeie ettt ettt ettt e e e st e sse e seenseenneens 149
DyNAMIC CIEAtIONeeitieiieiieeieeieitesieeiestestesee st eteeneeesaesseesseenseessesssesnnesseesseensennes 149
DIGLETIIIIISIIL <.ttt ettt st ettt ettt besae et ebeeanenaens 149
Semaphore INfOrmationc.oocuerierierieieee et 149
FUnction REfEIEICE.......eiuiriiriiiiiiiiiiiertee et e 149
NU_Create Semaphorecc.eiiiiieiieriiee ettt sttt et saee e eeeens 150
NU_Delete Semaphorecoc.eeiiiiiiiiiieieeie ettt eeens 152
NU_Established Semaphores..........c.ccevieriiiiiiiiienieieeee et 153
NU_ODbtain. SemaphOre.ceoveiiiiieiieriiee ettt sttt seee e 154
NU_Release Semaphorecoueiieriiriiiiiieeieseeee ettt 156
NU_Reset SeMAPROTE.....cc.uiiiiiitiiitieiieieee ettt et et seeenaeens 157
NU_Semaphore INformationcecceereieeiieieniienieieeie et 158
NU_Semaphore POINEELSc.cccveiieriieriieiieie ettt sie et saeesseeeeenee e 160
Example SOUICe Code.........oooiiiierieiieiieieete ettt ettt ettt st saesseesseensesnneenes 162
Chapter 10 — EVent GIOUPS......cceevvierieeiiieniieeieeiee et eve e seeeveeseee e 167
INEFOAUCLION ..ottt ettt 168
SUSPEIISIONeeeiiesiieeteete et et e et e st eteeteesteeebessaeeseesseesseenseensesneesseanseenseensennsenssessnensens 168
DyNAMIC CIEAtIONeetieiieiiieiieeiesiiesieeiestesteste st e bt eneeeseesseesseenseensesssesnnesseesseenseenes 168
DISLETIIIIISIIL «.c.enenteititeetcete ettt ettt sttt et et s ae st b sae et eseensenaens 168
Event Group Information.............ccueveeriieiieniesiie et 168
FUunction REfEIeNCE......ccueiiiiiiiieiieieee e 169
NU_Create EVEnt GIOUP........coceiierierieniieieeieeieest ettt sttt et seee i 170
NU _Delete EVent GIrouP.......coceieerieriieniieiieieeiieniceieee ettt sieeseeenieens 172
NU_Established EVent GIoUPScoceeiierienieiiiieeieeiiesiesieeie et 173
NU_Event Group Informationccoceeeieviiiiiiiinieniieiceeeesee e 174
NU_Event Group POINETS........c.cccveiieriieiiieiieieeieeieseeieeeeseeaeseeseesseesseeseenseennens 176
NU _REtEVE EVENLS ...eeviiiiiiieieeie ettt ettt te e saesseesseenseenseennens 178
NU_SEEEVENLS ..eeiiiiiiiieeie ettt ettt et e be e e e s 181

viii

Preface

EXample SOUICE COAEoiiiuiieiiiiiiiecieecieeete ettt ettt be e sve e ssbeessaeesebaesaseenneas 183
Chapter 11 - S1@NAlS....ccciiiiiiieeiieceeeeee e e 187
IIEEOAUCTION ..ottt et ettt b et e 188
Signal Handling ROULINEoooiiiiiiiiiiiiiiieee e 188
Enable Signal Handlingc.ccoooieriiiiiiiniieieeeeeseeee e 188
Clearing SIZNALS.....c.eeuiiiiiie ettt sttt ettt ettt et e enaeens 188
MUIIPIE STGNALS.....eevieeiieiieiie ettt ettt e ae s e e beebeesaesaeesseenseenseensessnenseans 188
DIELETIIIIISII ...ttt ettt ettt sttt na e e bbb b bt eneeneen 188
FUunction REfEIENCE.couiviiriiriiiiiiieiereer ettt 189
NU_COoNrol SiZNALSeeiiieiieiieieeieeieee ettt ettt sae et e e eeeesseeeeenteenseensesseensees 189
NU _RECEIVE SIZNALS.....eiiiiiiiiiiieriieii ettt ettt see et e et nteenseseaessaesseennes 190
NU_Register Signal Handler..........coccveirrieiieiieiiee e 191
NU_Send SiNals.......oooueiieiieieieeeee ettt ettt s saees 193
EXample SOUICE COAEiiiuiiiiiiiiiecieecieeeee ettt ettt sve e be e sbe et eessaeesebaeessaesnnas 195
Chapter 12 = TIMETScccvieeiiieeciee et e eiee et e eereeerveeesaeeeaaeesreeesreeesaneeenns 199
IIEEOAUCTION ..ottt ettt et ettt s 200
THCKS -ttt ettt ettt et b e b e bttt ettt sbeeshe e b et et ea 200
MaATgIn OF EITOT. ... ciiiiiiieiieieeeee ettt sttt e enaeen 200
Hardware ReqUITEIMENL.........cccuiirieeiiieeieecieeesteciee et e e e seve et e seaeesaaeessaeessaeessseenenees 200
ContiNUOUS CLOCK ...ttt ettt e e 200
TASK TIMETS ..ttt ettt sttt e st e bt ettt et e ebeesaeenneens 200
APPLICALION TIMEISevviiieiieiieieete e see st ete et et et e tee e esbeenaessaesseesseenseensesnnesseeseans 201
RE-SCREAUIING ...ocveieiieeeieiieeeeee ettt seeaeesneeneesseeseens 201
ENable/DiISable.c..oouiiuiriiriiieieieeienees ettt 201
DyNAMIC CIEAtION.ecuvieeeesiieiieieeteeieste st eteeteeetesstesseeseesessbessaesseesseenseenseensesseenseens 201
DIELETIIIIISII ...ttt ettt ettt bbbt et st be bt eate e eneen 201
Timer INFOrmationooveiiiiiiiiie ettt 202
Function REfEIENCE.oouiiiiiiiiiiiiiiiie ettt 202
NU_CONIOL TIMET ..ottt sttt et ettt ettt et enteseeesaees 203
NU _Create TIIMET ..c.eeiuiiieieiieiieie ettt sttt ettt et sb et et eneeseeesaees 204
NU _DEIEE TIMETeeneiiiiieiieieiesieee ettt st sttt et et e b et eeteseeenaees 206
NU_Established TImeTIS........ccvuieriieiiiiinienienieeeete sttt 208
NU_Get_ Remaining TiMe.......ccccveruieciieierienieiieieeeeseeseee e et eteeseeseeessee e eseensesnnes 209
NU _REtrIEVE CLOCK ...ouiiiiiiieieciieiieit ettt ense s 212
NU St CLOCK....eeutieiieiiecie sttt ettt et e b e et et e s e sseenseenseensessaenanas 213
NU_Timer InfOrmation..........cccveeuereieriierieriieieeieeieseesseesseesseeseseesseesseessessseensesssessnes 214
NU_TIMET POINLETS ...evveivieiieiieiieeeeteeieeieeie et eteseaesteesseeseeneeesaesseeseenseenseensesssessens 216
EXample SOUICE COAEooiiiiieiieieeieciieieee ettt ettt eseeaeseee s enseenseens 217
Chapter 13 - INTeITUPLSeeeiiieeeiie ettt e eeaee e 219
INEFOAUCLION ...ttt ettt et st 220
PrOECTION. ..ttt ettt et sa et ebe e eneen 220
LOW-LeVEl ISR ...ttt ettt st e 220
High-Level ISR ...ttt 220
HISR INfOIMAtiONeeeiiiiiiiieiieieee ettt st s 221
INEEITUPE LATETICY .oevvieeiiieeiiie ettt ettt ettt e et e st e et e e s teessbeessbeessaeessbaeenseesssaensseenns 221
Application Interrupt LOCKOULcocviriiiiiiiecieeeiieceet e 221

Nucleus PLUS Reference Manual

DITECt VECTOT ACCESS ..ttt ettt sttt ettt ettt ettt ettt st esbee e eee s 221
FUunction REfEIENCE......ccueiiiiiiiiiieee e 222
NU_Activate HISRooiiiiiiiiie ettt e 223
NU_CONrol TNEEITUPLSeeuvieereeiiesiieeiierie ettt e eee it ete e etesaessaesseesseenseenseennesseenseens 224
NU_Create HISRoooiiiiiiiieeee ettt sttt s s n 225
NU_Current HISR POINEET.......c.iioieiieriieiieie ettt sttt eee e neeenee e 227
NU Delete HISR ..ottt 228
NU_Established HISRScccciiiiiiiieiieieii ettt st 229
NU_HISR_INOrMAtION ...ocvieeiiiiieiiieciieiieie ettt sse e saeeneesneesseeneeens 230
NU_HISR POINETS ...eeutieiiieiieiiie ittt sttt et saee e e ens 232
NU_Local Control INEEITUPLS.....cc.eeruieriieiieiieieeiientieieete ettt siee e et eeeeseeenieens 233
NU _Register LISRooiiiiiiiieieiieeee ettt sttt 234
NU_SETUP VECTOT ..ottt ettt ettt ettt st st sbe e et e ae et eaeesbeenbeens 236
MaANAEd ISRS.eeuiiiiiii et 237
UNMAanaged TSRSccviiiiieeiie ettt ettt ettt e et e e steeetaeesaae e sbeessseessseennneens 239
Chapter 14 — System DiagnostiCscceerieeriierieeiiieniieeieesee e see e 241
INEPOAUCTION ...ttt et e e et e et e et eebee e taeeaeeentaeensaesnsseesnenans 242
Error Managementccueiieruieiieieeieeiie sttt sttt ettt ettt e 242

N 11 1010 = £ 10 PR URR 242
Version INfOrmationcecuieiirierieiiee ettt sse e 242
License INformation............cccueeierieriieiieeieeiesiese ettt ssaesseeseenneees 242
Building the PLUS LIDIary.......c.ccccoeieiierieieeiie ettt nee e 242
FUnction REfEIEICE.......eiuiriiriiiiiiiiiiiertee et e 243
NU_Disable HiStOrY SaVINGccoeiiirieriieiieieeieeiienieee ettt ens 243
NU_Enable HiStOry SaVING ...c.ccooiiiiriieiieiieieeiesi ettt 244
NU_License INformationooceerieriiiiiiiiieneeneeieeeee sttt 245
NU_Make HiStory ENtry....cccooiiioiiiiiii et 246
NU_Release INfOormationc.ccocoeereeriiiiiiiiienieneeieee ettt 247
NU_Retrieve HiStory ENtryccocooiiiiiiiiiiieeeee et 248
Example SOUICe COde........ooiiiiiriieiieiieieeie ettt ettt ettt seae e s e sseensesnneens 249
Chapter 15 — I/O DITVETS......coevieiiiiiiieienienceeeeeeeeeeeeste e 253
INEEOAUCTION ...ttt ettt st ettt aeesbeenaees 254
CommOon INEEITACEccuerviiiiiiiiiiier et 254
DIIVET CONEEIES. ...cvtentititieteeteeitetet ettt ettt ettt ettt et st be bt ebeeseeanenaens 254
PrOECTION. ¢..c.teetieietet ettt ettt bttt ettt be bbbt eanens 254
SUSPEIISIONeeeiietiesieeie et et e et e st e et eteesteenseseaeeseesseesseenseenseensesseanseenseenseensesnsessnensens 254
DyNAMIC CIEAtIONeetieiieieeiieeiesitesiteie e stesee st e st eseeeseesseenseenseessesssessnesseesseenseenes 255
Driver INfOrmation.........co.eeerieiiiiiriiereeeee ettt 255
FUunction REfEIeNCE......ccueiiiiiiiieiieieee e 255
NU _Create DITVETccueiitieiiiieiie ettt ettt sttt ettt s e b et et eas 256
NU _DEIELE DITVET....ccueiitieiiiiiiieiie ettt ettt ettt ettt et saee e e e ens 258
NU_DIIVET POINETS ...ttt ettt sttt st st e b e ens 259
NU_Established DITVELSccouiiiiiiiiiiiieie ettt 260
INU PTOTECE ..ttt sttt st st e st e s beeeabeesbaesatee s 261
NU _REQUESE DIIVET ...veiutieiiieiiecie ettt ettt stesaessaesseeseenaeensesseenseenseens 262
NU _RESUME DIIVET ...veiuiieiiieiieiie ettt ettt ssesaessaesseesseeseenseensesssensnens 264

Preface

NU_SUSPENA_ DIIVET ...ttt sttt sttt et et seeenaees 265
INU_UNPIOTECL .ttt ettt ettt ettt sb et e ettt st e et e sbe et e e e esteebeesbeebean 266
Implementing an I[/O DIIVETccvieviiiiiiecieecieeee ettt aeestaeeseaeeneee s 267
Actual DIiver REQUESES.ccveiiieiiiieiie ettt ettt sete e sseeaeenneeneesaeeseens 267
INTHHANIZALION.eeeiieiceiiecte ettt sttt 268
N3 ¥ OSSPSR 268
RELEASE. ...ttt ettt 269
TIIPUL ettt ettt ettt ettt et e e e e e st e e sateenabeene 269
OULPUL ...ttt ettt et e b et e bt e e bt e e bt e e beeesbteeabbeenbeeeabeeeseesnbaeenseennne 270
STALUS .ttt ettt ettt b e bt ettt et e h e bt ettt e a e eh e bt e b e et e et e eaeesaeenaee 270
TITIINALE. ...ttt ettt et e a e b e bt et e bt ssbeseeesbeenbee et eneeenee e 271
Driver IMPlementationccceeeciieiiierciieriiesie ettt ste et e eseaeeeeeessaeeeaeessaeeneees 272
EXAMPIE DIIVET ...vviiiiieiiieiie ettt et ettt e te e et eetaeeateessteeenseesnsaeensee s 274
Chapter 16 — Demo Application..........cccueeecuieeeiiieeriieeriee e 275
EXAMPIE OVEIVIEWviiiiieiiieiie ettt ettt e ste e et e s beeeveesateeesseesstaeenseesssaeensaesnsseenseesnsns 276
EXAMPIE SYSTEIM ...eiinviieiiieiieeie ettt ete et ettt seae et e e seaeessbeessseessbeesnseennss 277
Appendix A —Nucleus PLUS Constants..........ccccceeevveeeriieerieescieeseee e 283
Nucleus PLUS Constants (Alphabetical LiSting)ccocceevuerienienieiinienienieeeeseeen 284
Nucleus PLUS Constants (Numerical LiSting)ccccccvervieeriieniieeniienieenie e eee e 286
Appendix B — Error Conditions...........coccuveerieeeiieeeiieeeiie e eeiee e 289
Nucleus PLUS Fatal System EITors........cccveecviiiiieiiieniienieeieesie et e 290
Nucleus PLUS EITOr CO@Sueiuiiiiieriieiieiieiteiieetee ettt 290
Appendix C - I/O Driver Request Structures..........oocveeeeveeerieencveeenieeeennennn 293
Nucleus PLUS I/O Driver CONSEANTSc.ccecveereveerrieenieenieenreeneeeseeeenseeesseessseesseessessnnes 294
Nucleus PLUS I/O Driver C StIUCEUIEScccveervieeiieeriienieenireenieesieeesseeesseesseeesseessessnnes 294
Appendix D — Techniques for Conserving Memorycccceeveveeerveennneen. 297
Data INTtAlIZAtION ...e.eeitiiiiiieee et 298

NU _MAX LISRS ..ttt sttt ettt sbe e besbeeaeesee e ense s 298

TC _PRIORITIES ...ttt sttt et ene et e e eee e 299
HISR Stack Sharing.........ceecvevieiierieiie ettt aeeeeeneesseeseens 299
TCD_LOWESt St Bit ..ecuieiiieiieiieieeie ettt ettt ae e sae e e sseeseense e 299
Using a Smaller INT OPtion........cceeverieecierierieriieieeteeie et eresaeseesreesseenseennesseenseens 300

xi

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

Gra nlg_!;

Introduction

About Nucleus PLUS

Real Time Applications

Why Nucleus PLUS is Needed

Nucleus PLUS Reference Manual

About Nucleus PLUS

Nucleus PLUS is a real-time, preemptive, multitasking kernel designed for time-critical
embedded applications. Approximately 95% of Nucleus PLUS is written in ANSI C.
Because of this, Nucleus PLUS is extremely portable and is currently available for use
with most microprocessor families.

Nucleus PLUS is usually implemented as a C library. Real-time Nucleus PLUS
applications are linked with the Nucleus PLUS library. The resulting object may be
downloaded to the target, or placed in ROM. Nucleus PLUS is normally delivered in
source code form. Having access to the Nucleus PLUS source promotes greater
understanding and permits application-specific modifications.

Real-Time Applications

What is real-time? Real-time is a term used to describe software that must produce the
correct response to external and internal events at the proper time. Real-time may be
categorized as either hard or soft real-time. In soft real-time, failure to produce the correct
response at the correct time is undesirable. However, such a failure in hard real-time is
catastrophic.

Today’s real-time applications are often responsible for a variety of duties or tasks. Tasks
typically have a single purpose, and are therefore implemented as semi-independent
program segments. Most applications consist of hard and soft real-time tasks.

Why Nucleus PLUS is Needed

Due to inherent differences in task importance, the method used to share a processor
between tasks is very important. Simple real-time applications, and usually those of a more
soft real-time nature, might embed processor allocation logic inside the application tasks.
Implementations of this kind typically take the form of a control loop that continually
checks for tasks to execute. Such techniques suffer from the following problems:

Slow Response Time - The worst case time required to detect a critical event is the
duration of the worst case thread of execution.

Modification Difficulties - Since processor allocation logic is dispersed throughout the
application code, the time required for each task to execute is dependent on the processing
time of other tasks. Therefore, a code change in a single task could result in the failure of
the entire system.

Reduced Throughput - As the number of tasks increases, the amount of time wasted
looking for tasks to execute increases. This time could be better spent doing something
meaningful.

Chapter 1- Introduction

Difficult Software Development - Applications of this type typically have many
interdependencies, making the coordination of multiple engineers more difficult.
Additionally, porting such applications to other microprocessors may be more difficult.

Nucleus PLUS eliminates the need for processor allocation in the application software.
When a more important task requires execution, Nucleus PLUS suspends the currently
executing task and starts the higher-priority task. After the higher-priority task finishes, the
suspended task is resumed. The worst-case task response time under Nucleus PLUS is the
amount of time required to suspend the executing task and resume the more important
task. Nucleus PLUS provides quick and constant response time. Because of this,
modifications, and even additions of completely new tasks can be made without affecting
critical system response requirements.

Besides managing task execution, Nucleus PLUS also provides facilities that include task
communication, task synchronization, timers, and memory management.

From the software development standpoint, Nucleus PLUS fosters less task
interdependence and greater modularity. Because of this, multiple engineers may work on
tasks without worrying about the side-effects present in non-Nucleus PLUS applications.
Nucleus PLUS also provides a runtime environment that is completely independent of the
target processor. This benefits the development effort in two ways: First, engineers may
concentrate on the real-time application instead of the intricacies of the underlying
processor; Second, engineers may develop applications that execute on most popular
MICropProcessors.

To summarize, Nucleus PLUS greatly enhances the development of real-time applications.
This translates into lower development costs and shorter development time. Since Nucleus
PLUS allows easy migration of applications to new processor families, the application
development investment is protected.

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

Gra nlg_!;

Getting
Started

Application Development

Installing Nucleus PLUS

How to Use Nucleus PLUS
Application Initialization
Target System Considerations
Configuration Options
System Initialization

Memory Usage

Execution Threads

Nucleus PLUS Reference Manual

Application Development

Embedded, real-time applications are typically developed on what is called a host
computer system. The IBM PC and UNIX workstation are good examples of host
systems. Application software usually runs on a separate computer system, commonly
called the target system. However, the IBM PC is an exception to this rule. It can serve as
both a host and a target for Nucleus PLUS applications. Applications that run on the IBM
PC take the form of an EXE file.

Building an embedded real-time application is fairly straightforward. Application software
files, residing on the host system, are compiled/assembled into object form and linked
together. The resulting image is either downloaded to the target system or placed in ROM
on the target system.

Debugging software on the target system usually involves an In-Circuit Emulator (ICE)
tool or a Target-Resident Monitor (TRM). Having an ICE tool is the better option, since
an ICE tool gives engineers complete control and knowledge of the target system
hardware. ICE tools are especially useful during the checkout of new hardware. Because
of the cost, and in some cases the limited availability of ICE’s, many projects use TRM’s
for debugging. A TRM is a small software component that runs on the target system
(usually from ROM). TRM’s provide services that include downloading, breakpoints, and
memory access. Both ICE’s and TRM’s are controlled by the host system. This is often
accomplished through a serial interface.

Source-level debugging allows engineers to debug an application using the actual C source
code. This capability requires an additional program on the host system that makes
associations between the C source code and what is in the target system memory. Most
source-level debuggers use ICE’s or TRM’s to actually control and access the target
system hardware.

Nucleus PLUS is integrated with numerous C source-level debuggers. In addition, the
Nucleus PLUS Debugger is available to add extended multitasking debugging capabilities
for Nucleus PLUS applications.

Installing Nucleus PLUS

The entire Nucleus PLUS system requires approximately two megabytes of disk space on
the host system. Please see your target specific manual for a full explanation of the
installation process. Installation procedures vary from one target environment to another.

Chapter 2 - Getting Started

How to Use Nucleus PLUS

Nucleus PLUS is designed for use as a C library. Services used inside application
software are extracted from the Nucleus PLUS library and combined with the application
objects to produce the complete image. This image may be downloaded to the target
system or placed in ROM on the target system.

The steps for using Nucleus PLUS are described in the following generic form:
1) Make changes, if necessary, to the low-level system initialization file, | NT.

NOTE: This file is usually delivered in assembly language form and its
extension is development tool specific.

2) Define the Application_lnitialize function, which is executed by Nucleus
PLUS prior to starting the system. Note the file NUCLEUS. H must be included in
order to make Nucleus PLUS service calls.

3) Define application tasks. If Nucleus PLUS services are used, the file NUCLEUS. H
must be included.

4) Compile and/or assemble all application software, including the low-level system
initialization file | NT.

5) Link I NT and all application object files with the Nucleus PLUS library and any
necessary development tool libraries.

6) Download the complete application image to the target system and let it run!

Please review the processor and development system documentation for additional
information, including specific details on how to use the compiler, assembler, and linker.

Nucleus PLUS Reference Manual

Application Initialization

The Application_Initialize routine is responsible for defining the initial
application environment. This includes tasks, mailboxes, queues, pipes, semaphores, event
groups, memory pools, and other Nucleus PLUS objects.

Application_Initialize is provided with a pointer to the first available memory
address. Memory after this address is not used by the compiler or Nucleus PLUS, and is
therefore available to the application. Although the specific contents of
Application_lnitialize depend on the application, the following template is always
valid:

#i ncl ude <nucl eus. h>
void Application_Initialize(void *first_avail abl e_nmenory)

/* Application-specific initialization of Nucleus PLUS
objects, including the creation of tasks, mail boxes,
gueues, pipes, event groups, and nenory pools. */

}

Services called from the initialization routine cannot try to suspend, since the initialization
routine does not execute as a task. Also, note that at least one task or interrupt handler
must be created by Appl i cation_Initialize,andthat Application_Initializeis
the last routine to execute prior to execution of the first task.

The following example of Application_lnitialize creates a memory pool and a
task. Notice that this example does not check for any error conditions.

#i ncl ude <nucl eus. h>

/* Define task control structure. */
NU_TASK Task;

/* Define dynam c nmenory pool control structure. */
NU_MEMORY_POOL Menory_Pool ;

void Application_Initialize(void *first_avail abl e_nmenory)

voi d *stack_ptr;
/* Create a 4,000 byte dynam c menory pool that starts at
the first avail abl e address. */
NU_Cr eat e_Menory_Pool (&Venory_Pool , “SYSTEM,
first_avail abl e_nenory, 4000, 50,
NU_FI FO) ;

/* Allocate the task’s stack fromthe nmenory pool. */
NU_Al | ocat e_Menory(&Venory_Pool , &stack_ptr, 500,
NU_NO_SUSPEND) ;

/* Create an application task with the function
abc (0, NU NULL) as the entry point. */
NU_Creat e_Task (&Task, “ABC TASK", abc, O,
NU_NULL, stack_ptr, 500, 10, NU PREEMPT,
NU_START) ;

Chapter 2 - Getting Started

Target System Considerations

The size of the Nucleus PLUS instruction area varies from a maximum of 20Kb on
Complex Instruction Set Computer (Cl SC) architectures to roughly 40Kb on Reduced
Instruction Set Computer (RISC) architectures. As for data structures, Nucleus PLUS
requires a minimum of 1.5Kb of RAM. This does not include the amount of memory
required for application tasks, queues, pipes, and other Nucleus PLUS objects.

Since Nucleus PLUS does not attempt to modify any preset data elements, it may easily be
placed in ROM Additionally, Nucleus PLUS is compatible with the ROM options available
with each development environment.

If the target system contains a Target-Resident Monitor (TRM), the Nucleus PLUS
application must be loaded to a memory area not used by the TRM. Additionally, the
application must only take the interrupt vectors needed, since the TRM uses interrupt
vectors to perform breakpoints and other functions.

Configuration Options

Nucleus PLUS applications have one conditional compilation option. By defining the
NU_NO_ERROR_CHECKI NG symbol on the command line used to compile an application
source file, all error checking logic in Nucleus PLUS services is bypassed. This results in
improved Nucleus PLUS service performance.

There are several conditional compilation options available for use when building the
Nucleus PLUS library. Generally, these options may be added to the compile commands
inside the batch file, which contains all of the commands necessary to build the Nucleus
library. It is highly recommended that you refer to your target specific notes for the port
that you are using for full details.

The conditional compilation symbols available and their corresponding meanings are
defined as follows:

Compilation Symbol Meaning

NU_ENABLE_HI STORY Results in a history entry for each service call. This
symbol may be added to commands for compilation
of any or all **C. C files.
NU_ENABLE_STACK_CHECK Enables stack checking. This symbol may be added
to commands for compilation of any or all **C. C
files.

NU_ERRCR_STRI NG Builds an ASCII error message if a fatal system error
is encountered. This option is only applicable when
compiling ERD. C, ERI . C, and ERC. C.
NU_NO_ERRCR_CHECKI NG Disables error checking on Nucleus PLUS system
calls.

Nucleus PLUS Reference Manual

System Initialization

The | NT_INITIALIZE routine is typically the first to execute in a Nucleus PLUS
system. For most target environments, the hardware reset vector should contain the
address of | NT_I NI TI ALI ZE. | NT_I NI TI ALI ZE is responsible for all target-dependent
initialization. Target dependent initialization often includes setting up various processor
control registers, the interrupt vector table, global C data elements, several Nucleus PLUS
variables, and the system stack pointer. When | NT_I NI TI ALI ZE is finished, control is
transferred to the high-level Nucleus PLUS initialization routine | NC_| NI Tl ALI ZE.
Note that control never returns to | NT_I NI TI ALI ZE.

I NC_I NI TI ALI ZE calls the initialization routines of each Nucleus PLUS component.
After all Nucleus PLUS initialization is complete, | NC_I NI TI ALI ZE calls the user-
supplied initialization routine, Application_Initiali ze.

The Application_Initialize routine is responsible for defining the initial
application environment. Initial application tasks, mailboxes, queues, pipes, semaphores,
event groups, memory pools, and other Nucleus PLUS objects are defined in this routine.

After Application_Initialize returns, INC Initialize initiates task scheduling.

Memory Usage

Nucleus PLUS provides applications with the ability to designate memory utilization for
each system object. System objects include tasks, HISRs, queues, pipes, mailboxes,
semaphores, event flag groups, memory partition pools, dynamic memory pools, and I/O
drivers. Each of the previously mentioned system objects requires a control structure.
Some of the system objects require additional memory. For example, task creation
requires memory for the control block and memory for the stack. All memory required by
a system object is supplied during its creation.

Flexibility is the greatest benefit of this technique. For example, suppose a target board is
equipped with a limited amount of high-speed memory. Performance of a high-priority
task may be significantly increased by locating its task control block and stack in this high-
speed memory area. Other tasks in the system may use a more abundant, but slower
memory area. Of course, the performance of other system objects can be improved in a
similar manner.

There are several ways to allocate memory for system objects. The easiest method is to
allocate the memory using global C data structures. Another method is to dynamically
allocate the memory, either from a dynamic memory pool or a partition memory pool. The
third method is to allocate the memory from absolute physical areas on the target system.

10

Chapter 2 - Getting Started

Allocating memory for system objects using global C data structures is the easiest method
for allocating control structures. The following are examples of control block allocation
for each type of system object:

System Object Example

NU_TASK Exanpl e_Task;

NU_H SR Exanpl e_HI SR;

NU_DRI VER Exanpl e_Dri ver;
NU_QUEUE Exanpl e_Queue;
NU_MNAI LBOX Exanpl e_Mai | box;
NU_PI PE Exanpl e_Pi pe;
NU_SEMAPHORE Exanpl e_Semaphor g;
NU_EVENT_CGROUP Exanpl e_Event _G oup;
NU_PARTI TI ON_POOL Exanpl e_Partition_Pool ;
NU_MEMORY_POOL Exanpl e_Menory_Pool ;

Exanpl e_* are control blocks that reside in the global C data area. A pointer to the
appropriate control block is passed to the appropriate create service. Stacks, queue areas,
memory pool areas, and other system object areas may also be allocated as global C data
structures, however it is generally less attractive than subsequent methods. NOTE: Local
C data structure allocation is also legal, providing that the objects defined within a
function are no longer in use when the function returns.

Allocating memory for system objects from a Nucleus PLUS memory pool is quite
common. Memory pools are themselves system objects, and therefore may be created to
manage various memory areas.

The following is an example of allocating a task control block and a 1000-byte stack from
a previously created dynamic memory pool(System Menory is the global C control
block of this previously created memory pool) :

NU_TASK *Exanpl e_Task_Ptr;
VO D *Exanpl e_Stack_Ptr;

/* Allocate nenory for task control structure. */
NU_Al | ocat e_Menor y(&Syst em Menory, (VO D **) &Exanpl e_Task_Ptr,
si zeof (NU_TASK), NU_NO_SUSPEND) ;

/* Allocate nenory for task stack. */
NU_Al | ocat e_Menory(&System Menory, &Exanpl e_Stack_Ptr,
1000, NU_NO_SUSPEND) ;

/* Task create call is supplied with Exanple_Task_Ptr and the
Exanpl e_Stack_Ptr. /*

Finally, the last type of system object memory allocation involves specific memory areas
on the target board. Assume that address 0x200000 is a high-speed memory area of 4096
bytes. The first example creates a dynamic memory pool in that memory area.

Nucleus PLUS Reference Manual

The second example allocates memory for a high-priority task, with both the control block
and a 2000-byte stack in the high-speed memory area.

Example 1:
NU_MEMORY_POOL System Menory;

/* Create a dynamic nenory pool that nmanages the high-speed
nmenory at 0x200000. */

NU_Creat e_Menory_Pool (&System Menory, “SYSMEM', (VA D *)

0x200000, 4096, 20, NU FIFO;

Example 2:
NU_TASK *Exanpl e_Task_Ptr;
VA D *Exanpl e_St ack_Ptr;
CHAR *Hi gh_Speed_Mem Ptr;

}* Put starting address into high-speed nmenory pointer. */
Hi gh_Speed_Mem Ptr = (CHAR *) 0x200000;

/* Allocate the task control block at begi nning. */
Exanpl e_Task_Ptr = (NU_TASK *) Hi gh_Speed_Mem Ptr;

/* Adjust the high-speed nmenory pointer. */
H gh_Speed_Mem Ptr = Hi gh_Speed_Mem Ptr + sizeof (NU_TASK);

/* Allocate the task stack area. */
Exanpl e_Stack_Ptr = (VO D *) H gh_Speed_Mem Ptr;

/* Adjust the pointer to the high-speed nenory area in case nore allocation
i s needed. */
H gh_Speed_Mem Ptr = Hi gh_Speed_Mem Ptr + 2000;

/* Call create task with Exanpl e_Task_Ptr & Exanple_Stack_Ptr. */

12

Chapter 2 - Getting Started

Execution Threads

A Nucleus PLUS application is always in one of eight possible threads of execution. The
following is a list of all possible execution threads:

Initialization
System Error
Scheduling Loop
Task

Signal Handler
User ISR

LISR

HISR

Initialization

The initialization thread is the first thread of execution in the system. The entry point of
the initialization thread is INT_Initialize. After the Application_Initialize
function returns, the initialization thread is terminated by transferring control to the
scheduling loop.

System Error

There are several possible system errors, most of which are detected during initialization.
However, stack overflow conditions are detected during task and HISR execution. This
thread of execution starts when the function ERC Syst em Error is called. By default,
system errors are fatal and therefore control stays in this thread. See Appendix B for
system error codes.

Scheduling Loop

Entry to the scheduling loop occurs at TCT_Schedul e. This thread of execution is
responsible for transferring control to the highest priority HISR or task ready for
execution. While there are no tasks or HISRs ready to execute, control stays in a simple
loop within TCT_Schedul e.

Task

Task threads represent the majority of application processing threads. Each task thread has
its own stack. The entry of each task thread is specified during task creation. Task threads
have full access to Nucleus PLUS services.

Signal Handler

A signal handler thread executes on top of the associated task’s thread. Signal handler
threads have limited access to Nucleus PLUS services. The primary limitation is that self-
suspension is not allowed.

Nucleus PLUS Reference Manual

User ISR

User Interrupt Service Routine threads are typically small assembly language routines that
are tied directly to an interrupt vector. Such threads are responsible for saving and
restoring any registers used. Nucleus PLUS services are completely off-limits to this type
of thread. In fact, C functions are also off-limits, unless the thread saves and restores all
registers used by the compiler.

LISR

Low-Level Interrupt Service Routines are registered with Nucleus PLUS. This allows
Nucleus PLUS to save and restore all necessary registers. LISR threads may therefore be
written in C. LISR threads have limited access to Nucleus PLUS services; the most
important is the activate-HISR service.

The following services are available from LISRs:

NU Activate_ H SR

NU Local _Control _Interrupts
NU_Current _Hl SR_Poi nt er
NU_Current _Task_Poi nt er
NU_Li cense_I nformati on

NU Retrieve_C ock

HISR

High-Level Interrupt Service Routines form the second part of a Nucleus PLUS interrupt.
HISR threads are scheduled in a manner similar to task threads, and also may call most of
the Nucleus PLUS services. However, HISR threads are not allowed to make any self-
suspension requests. The entry point of an HISR routine is determined during HISR
creation.

14

Task
Control

Introduction

Task States

Function Reference

Nucleus PLUS Reference Manual

Introduction

A task is a semi-independent program segment with a dedicated purpose. Most modern
real-time applications require multiple tasks. Additionally, these tasks often have varying
degrees of importance. Managing the execution of competing, real-time tasks is the main
purpose of Nucleus PLUS.

Task States

Each task is always in one of five states: executing, ready, suspended, terminated, or
finished. The following list describes each of the task states:

State Meaning

executing Task is currently running.

ready Task is ready, but another task is currently running.

suspended Task is dormant while waiting for the completion of a service request.
When the request is complete, the task is moved to the ready state.

terminated Task was killed. Once in this state, the task cannot execute again until
it is reset.

finished Task finished it’s processing and returned from initial entry routine.
Once in this state, the task cannot execute again until it is reset.

Preemption

Preemption is the act of suspending a lower priority task when a higher priority task
becomes ready. For example, suppose a task with a priority of 100 is executing. If an
interrupt occurs that readies a task with a priority of 20, the task with priority 20 is
executed before the interrupted task is resumed. Preemption also occurs when a lower
priority task calls a Nucleus PLUS service that makes a higher priority task ready.

Preemption may be disabled on an individual task basis. When preemption is disabled, no
other task is allowed to run until the executing task suspends, relinquishes control, or
enables preemption. A task that suspends or relinquishes control with preemption disabled
has preemption disabled when it is resumed.

A task is created with preemption either enabled or disabled. Preemption may also be
enabled and disabled during task execution.

Relinquish

A mechanism is provided to share the processor with other ready tasks at the same priority
level in a round-robin fashion. When a task requests this service, all other ready tasks at
the same priority are executed before the originally executing task is resumed.

16

Chapter 3 - Task Control

Time Slicing

Time slicing provides another mechanism to share the processor with tasks having the
same priority. A time slice corresponds to the maximum number of timer ticks (timer
interrupts) that can occur before all other ready tasks at the same priority level are given a
chance to execute. A time-slice behaves like an unsolicited task relinquish. Note that
disabling preemption also disables time slicing.

Dynamic Creation

Nucleus PLUS tasks are created and deleted dynamically. There is no preset limit on the
number of tasks an application may have. Each task requires a control block and a stack.
The memory for each element is supplied by the application.

Determinism

Processing time associated with suspending and resuming tasks is a constant. It is not
affected by the number of application tasks. Additionally, the method in which tasks
execute is not only predictable, but also guaranteed. Higher priority, ready tasks execute
before lower priority, ready tasks. Ready tasks of the same priority execute in the order
they became ready.

Stack Checking

Application tasks may check the amount of memory left on the current stack. This
function also keeps track of maximum stack usage. Stack checking may also be enabled
inside Nucleus PLUS services through a conditional compilation option.

Task Information

Application tasks may obtain a list of active tasks. Detailed information about each task
can also be obtained. This information includes the task name, current state, scheduled
count, priority, and stack parameters.

Priority

A task’s priority is defined during task creation. Additionally, dynamic modification of a
task’s priority is supported. A task that has a numerical priority of 0 has a higher priority
than a task with a numerical priority of 255. Nucleus PLUS executes higher priority tasks
before lower priority tasks. Tasks having the same priority are executed in the order in
which they became ready for execution.

NOTE: Care must be taken when assigning priorities to application tasks. If care
is not taken, the priorities can cause task starvation and excessive system
overhead.

Nucleus PLUS Reference Manual

A task may only execute if it is the highest priority, ready task. Therefore, if a task or
tasks at a certain priority are always ready, all tasks of a lower priority never execute.
This situation is called starvation. There are several cures for this. First, higher priority
tasks should suspend to allow lower priority tasks to execute.

Tasks that run at or near continuously should have a relatively low priority. Another
technique to combat starvation is to gradually raise the priority of the starving task.

A substantial amount of additional overhead may be incurred if task priorities are used
improperly. Consider a system of three tasks named A, B, and C. Each task has similar
processing that consists of waiting for a message and/or sending a message in an infinite
loop. Task A waits for a message from an Interrupt Service Routine (ISR) and then sends
a message to task B. Task B waits for a message from task A and then sends a message to
task C. Task C waits for a message from task B and then increments a counter. After this
simple system starts (regardless of priority), all tasks execute briefly, and then suspend
waiting for a message.

If all of the tasks have the same priority, the following set of events take place after the
ISR sends a message to task A:

Task A is resumed

Task A sends a message to task B, making task B ready
Task A suspends waiting for another message

Task B is resumed

Task B sends a message to task C, making task C ready
Task B suspends waiting for another message

Task C is resumed

Task C increments a counter

Task C suspends waiting for another message

Now assume that task A is lower priority than task B and task B is lower priority than task
C. The following events take place after the ISR sends a message to task A:

Task A is resumed

Task A sends a message to task B, making task B ready
Task A relinquishes to higher priority task B

Task B is resumed

Task B sends a message to task C, making task C ready
Task B relinquishes to higher priority task C

Task C is resumed

Task C increments a counter

Task C suspends waiting for another message

Task B is resumed again

Task B suspends waiting for another message

Task A is resumed again

Task A suspends waiting for another message

18

Chapter 3 - Task Control

The application work performed in both of the previous examples is the same, i.e. two
tasks sent messages and three tasks received messages. However, the amount of system
overhead in resuming and suspending tasks doubled. Also notice the delay incurred in
task A between sending a message and waiting for another message in the last example.

Obviously the previous example systems are useful only to show how priorities can affect
system overhead. Different priorities are necessary for real-time applications to respond to
external events and to allocate processing time to relatively more-important tasks.
However, in order to reduce unnecessary system overhead, the number of different
priorities in an application should be minimized.

Function Reference

The following function reference contains all Nucleus PLUS task control services. The
following functions are contained in this reference:

NU_Change_Preenpti on
NU_Change Priority
NU_Change_Ti ne_Slice
NU_Check_St ack
NU_Creat e_Task
NU_Current _Task_Poi nter
NU_Del et e_Task
NU_Est abl i shed_Tasks
NU_Rel i nqui sh
NU_Reset _Task
NU_Resune_Task

NU_SI eep
NU_Suspend_Task
NU_Task_|I nformati on
NU Task Pointers
NU_Ter mi nat e_Task

Nucleus PLUS Reference Manual

NU_Change_ Preenpti on
OPTI ON NU_Change_Pr eenpti on(OPTI ON preenpt)

This service changes the preemption posture of the currently executing task. If the preempt
parameter contains NU_NO PREEMPT, preemption of the calling task is disabled.
Otherwise, if the preempt parameter contains NU_PREEMPT, preemption of the calling
task is enabled.

NOTE: Disabling preemption also disables any time-slice associated with the
calling task.

Overview

Option
Tasking Changes | Yes
Allowed From Task

Category Task Control Services
Parameters
Parameter Meaning
preenpt Valid options for this parameter are NU_PREEMPT and

NU_NO PREEMPT. NU_PREEMPT indicates that the task is
preemptable, while NU_NO PREEMPT indicates that the task is
not preemptable. NOTE: Time slicing is disabled if the task is not
preemptable.

Return Value

The previous preemption posture (either NU_NO PREEMPT or NU_PREEMPT) is returned.

Example

OPTI ON ol d_preenpt;
/* Disable preenption of the current task. */
ol d_preenmpt = NU _Change_Preenpti on(NU_NO PREEMPT) ;

}* Restore previous preenption posture. */
NU_Change_Pr eenpti on(ol d_preenpt);

See Also
NU_Creat e_Task, NU Change_ Priority, NU Change Tine_Slice

20

Chapter 3 - Task Control

NU _Change Priority

OPTI ON NU_Change_Priority(NU TASK *t ask,
OPTI ON new_priority)

This service changes the priority of the specified task to the value contained in
new_priority. Priorities are numerical values ranging from 0 to 255. Lower numerical
values indicate greater task priority.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
t ask Pointer to the user-supplied task control block. NOTE: All
subsequent requests made to this task require this pointer.
new priority Specifies a priority value between 0 and 255. The lower the
numeric value, the higher the task’s priority.

Return Value

This service returns the previous priority to the caller.

Example
NU_TASK Task;

OPTI ON old_priority;

/* Change the priority of the task control block “Task”

to priority 10. Assune “Task” has previously been

created with the Nucl eus PLUS NU Create_Task service call. */
old_priority = NU_Change_Priority(&Task, 10);

See Also
NU_Creat e_Task, NU_Change_Preenption, NU Change Tine_Slice

21

Nucleus PLUS Reference Manual

NU_Change Tine_Slice
UNSI GNED NU_Change_Tine_Sli ce(NU_TASK *task, UNSIGNED tinme_slice)

This service changes the time slice of the specified task to the value contained in
time_slice. If tine_slice contains a value of 0, time slicing for the task is
disabled.

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
task Pointer to the user-supplied task control block. NOTE: All
subsequent requests made to this task require this pointer.
time_slice Indicates the maximum amount of timer ticks that can expire
while executing this task. A value of zero in this field disables
time slicing for this task.

Return Value

This service returns the previous time slice value to the caller.

Example
NU_TASK Task;

UNSI GNED old tinme_slice;

/* Change the tine slice of the task control block “Task” to
35 timer ticks. Assune “Task” has previously been created
with the Nucl eus PLUS NU Create_Task service call.*/

old_time_slice = NU Change_Ti nme_Slice(&Task, 35);

See Also
NU_Create_Task, NU Change_ Priority, NU Change_Preenption

22

Chapter 3 - Task Control

NU_Check_St ack
UNSI GNED NU_Check_St ack(VO D)

This service examines the stack usage of the caller. If the remaining amount of space is
less than that required to save the caller’s context, a stack overflow condition is present
and control will not return to the caller. If a stack overflow condition is not present, the
service returns the number of free bytes remaining in the stack. Additionally, this service
keeps track of the minimum amount of available stack space.

Overview

Option
Tasking Changes No

Allowed From HISR, Signal Handler, Task
Category Task Control Services

Parameters

None

Return Value

This service returns the number of bytes currently available on the caller’s stack.

Example

UNSI GNED r enmi ni ng;

/* Check the current stack for an overflow conditi on.
Store the nunber of free stack bytes in “remaining.” */
remai ni ng = NU_Check_Stack();

See Also
NU Create_Task, NU Create_H SR

23

Nucleus PLUS Reference Manual

NU Creat e _Task

STATUS NU_Creat e_Task(NU_TASK *task, CHAR *nane, VO D

(*task_entry) (UNSI GNED, VA D *),

UNSI GNED argc, VO D *argv,

VO D *stack_address, UNSI GNED st ack_si ze,
OPTION priority, UNSIGNED tinme_slice,
OPTI ON preenpt, OPTION auto_start)

This service creates an application task.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
task Pointer to the user-supplied task control block. NOTE: All
subsequent requests made to this task require this pointer.
name Pointer to an 8-character name for the task. The name does

not have to be null-terminated.

task_entry

Specifies the entry function of the task.

argc

An UNSI GNED data element that may be used to pass initial
information to the task.

argv

A pointer that may be used to pass information to the task.

st ack_address

Designates the starting memory location of the task’s stack.

stack_si ze

Specifies the number of bytes in the stack.

priority

Specifies a priority value between 0 and 255. The lower the
numeric value, the higher the task’s priority.

time_slice

Indicates the maximum amount of timer ticks that can expire
while executing this task. A value of zero in this field
disables time slicing for this task.

pr eenpt

Valid options for this parameter are NU_PREEMPT and
NU_NO PREEMPT. NU_PREEMPT indicates that the task is
preemptable, while NU_NO_PREEMPT indicates that the task
is not preemptable. NOTE: Time slicing is disabled if the
task is not preemptable.

auto_start

Valid options for this parameter are NU_START and
NU_NO_START. NU_START places the task in a ready state
after it is created. Tasks created with NU_NO_START must
be resumed later.

24

Chapter 3 - Task Control

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I'NVALI D_TASK Indicates the task control block pointer is NULL.

NU_I NVALI D_ENTRY Indicates the task’s entry function pointer is NULL.

NU_I NVALI D_MEMORY Indicates the memory area specified by the
stack_address is NULL.

NU_I NVALI D_SI ZE Indicates the specified stack size is not large enough.

NU_I NVALI D_PRI ORI TY | Indicates priority is invalid.

NU_I NVALI D_PREEMPT | Indicates that the preempt parameter is invalid. This error
also occurs if a time slice is specified along with the no-
preemption option.

NU_I NVALI D_START Indicates the aut o_st art parameter is invalid.

Example

/* Assume task control block “Task” is defined as gl obal
data structure. This is one of several ways to allocate
a control block. */

NU_TASK Task;
STATUS status; /* Task creation status */

/* Create a task whose entry point is the function “task_entry”
and that has a 2000-byte stack pointed to by “stack_ptr.”
Note the follow ng additional paraneters:

argc and argv (0, NULL)
priority is 200

15 tiner-tick tinme slice
pr eenpt abl e

automatic start */

status = NU Create_Task(&Task, “any name”, task_entry, 0, NULL,
stack_ptr, 2000, 200, 15, NU PREEMPT,
NU_START) ;

/* At this point status indicates if the service was successful. */

See Also

NU_Del et e_Task, NU_Established_Tasks, NU Task Pointers,
NU_Task_I nformati on, NU Reset_Task

25

Nucleus PLUS Reference Manual

NU Current Task Poi nter
NU_TASK *NU_Current _Task_Poi nt er (VO D)

This service returns the currently active task pointer. If no task is currently active, an
NU_NULL is returned. If a HISR is the active thread, and a task that could resume after the
HISR completes has been interrupted , the return value is still NU_NULL.

Overview

Option
Tasking Changes | No

Allowed From LISR, Signal Handler, Task
Category Task Control Services

Parameters

None

Return Value

This service returns a pointer to the currently active task control block.

Example
NU_TASK *task_ptr;

/* Obtain the currently active task’s pointer. */
task_ptr = NU Current_Task_Pointer();

See Also
NU_Est abl i shed_Tasks, NU _Task_Poi nters, NU Task_Information

26

Chapter 3 - Task Control

NU Del et e_Task
STATUS NU_Del et e_Task(NU_TASK *t ask)

This service deletes a previously created application task. The parameter t ask identifies
the task to delete. Note that the specified task must be either in a finished or terminated
state prior to calling this service. Additionally, the application must prevent the use of this
task during and after deletion.

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
task Pointer to the user-supplied task control block. Note: all

subsequent requests made to this task require this pointer.

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TASK Indicates the task pointer is invalid.
NU_I NVALI D_DELETE Indicates the task is not in a finished or terminated state.
Example
NU_TASK Task;
STATUS st at us

/* Delete the task control block “Task”. Assume “Task” has
previously been created with the Nucl eus PLUS NU Create_Task
service call. */

status = NU_Del et e_Task(&Task) ;

/* At this point, status indicates whether the service request was
successful . */

See Also

NU_Creat e_Task, NU _Established_Tasks, NU Task_Pointers,
NU_Task_I| nformati on, NU_Reset Task

27

Nucleus PLUS Reference Manual

NU Est abl i shed _Tasks
UNSI GNED NU_Est abl i shed_Tasks (VO D)

This service returns the number of established application tasks. All created tasks are
considered established. Deleted tasks are no longer considered established.

Overview

Option
Tasking Changes No

Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Control Services

Parameters

None

Return Value

This service call returns the number of established application tasks.

Example
UNSI GNED t ot al _t asks;

/[* Cbtain the total nunber of tasks. */
total _tasks = NU Established_Tasks();

See Also

NU_Creat e_Task, NU Del ete_Task, NU Task_Pointers,
NU_Task_I nformati on, NU Reset_Task

28

Chapter 3 - Task Control

NU_Rel i nqui sh
VO D NU_Rel i nqui sh(VO D)

This service allows all other ready tasks of the same priority a chance to execute before the
calling task runs again.

Overview

Option
Tasking Changes Yes

Allowed From Task

Category Task Control Services

Parameters

None

Return Value

None

Example

/* Allow other tasks that are ready at the sane
priority to execute before the calling task
resunes. */

NU_Rel i nqui sh();

See Also

NU_SI eep, NU Suspend_Task, NU Resune_Task, NU Term nate_Task,
NU_Reset _Task, NU Task_I nformation

29

Nucleus PLUS Reference Manual

NU Reset Task
STATUS NU_Reset _Task(NU_TASK *task, UNSI GNED argc, VA D *argv)
This service resets a previously terminated or finished task.
NOTE: This service does not resume the task after it is reset. NU_Resunme_Task

must be called to actually start the task again. The parameters of this service are
further defined as follows:

Overview
Option
Tasking Changes No
Allowed From HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
t ask Pointer to the task control block.
argce An UNSI GNED data element that may be used to pass
information to the task.
argv A pointer that may be used to pass information to the task.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TASK Indicates the task pointer is invalid.
NU_NOT_TERM NATED | Indicates the specified task is not in a terminated or finished
state. Only tasks in a terminated or finished state can be reset.

Example
NU_TASK Task;
STATUS st at us

/* Reset the previously term nated task control block “Task”.
Pass the task values of 0 and NULL for argc and argv. Assune
“Task” has previously been created with the Nucl eus PLUS

NU _Creat e_Task service call. */

status = NU_Reset _Task(&Task, 0, NULL);

See Also

NU_Create_Task, NU Del ete_Task, NU Term nate_Task, NU Resune_Task,
NU_Suspend_Task, NU Task_I nformation

30

Chapter 3 - Task Control

NU Resune_Task
STATUS NU_Resume_Task(NU_TASK *t ask)
This service resumes a task that was previously suspended by the NU_Suspend_Task

service. Additionally, this service initiates a task that was previously reset or created
without an automatic start.

Overview
Option
Tasking Changes Yes
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
t ask Pointer to the user-supplied task control block.

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_TASK Indicates the task pointer is invalid.

NU_I NVALI D_RESUME | Indicates the specified task is not in an unconditionally
suspended state.

Example
NU_TASK Task;

STATUS st at us

/* Resune the task control block “Task”. Assume “Task”
has previously been created with the Nucl eus PLUS
NU Create_Task service call. */

status = NU_Resune_Task(&Task,);

See Also
NU_Creat e_Task, NU Suspend_Task, NU Reset_ Task, NU Task_Information

31

Nucleus PLUS Reference Manual

NU_SI eep
VO D NU_SI eep(UNSI GNED ti cks)

This service suspends the calling task for the specified number of timer ticks.

Overview
Option
Tasking Changes Yes
Allowed From Task
Category Task Control Services
Parameters
Parameter Meaning
ticks Number of timer ticks that the task will be suspended.

Return Value

None

Example

/* Sleep for 20 tiner ticks */
NU_SI eep(20) ;

See Also
NU_Rel i nqui sh

32

Chapter 3 - Task Control

NU_Suspend_Task

STATUS NU_Suspend_Task(NU_TASK *t ask)

This task unconditionally suspends the task specified by the pointer task. If the task is
already in a suspended state, this service insures that the task stays suspended even after its

original cause for suspension is lifted. NU_Resume_Task must be used to resume a task

suspended in this manner.

Overview
Option
Tasking Changes Yes
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
task Pointer to the user-supplied task control block. NOTE: All

subsequent requests made to this task require this pointer.

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TASK Indicates the task pointer is invalid.
Example
NU_TASK Task;

STATUS st at us;

/* Unconditionally suspend the task control bl ock

“Task”. Assunme “Task” has previously been created
wi th Nucl eus PLUS NU Create Task service call. */
status = NU_Suspend_Task(&Task) ;

See Also
NU_Resume_Task, NU Term nate_Task, NU Reset_Task

33

Nucleus PLUS Reference Manual

NU Task I nformation

STATUS NU_Task_| nformati on(NU_TASK *t ask, CHAR *nane,

DATA ELEMENT *task_stat us,

UNSI GNED *schedul ed_count,

OPTION *priority, OPTION *preenpt,
UNSI GNED *time_slice,

VO D **st ack_base,

UNSI GNED *st ack_si ze,

UNSI GNED *mi ni num st ack) ;

This service returns various information about the specified task.

Overview
Option
Tasking Changes No
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
task Pointer to the task.
name Pointer to an 8-character destination area for the task’s name.

task_status

Pointer to a variable to hold the current status of the task.

schedul ed_count

Pointer to a variable to hold the number of times the task has
been scheduled.

priority

Pointer to a variable to hold the task’s priority.

pr eenpt

Pointer to a variable to hold the task’s preempt option.
NU_PREEMPT indicates the task is preemptable, while
NU_NO PREEMPT indicates the task is not preemptable.

time_slice

Pointer to a variable to hold the task’s time slice value. A
value of zero indicates that time slicing for this task is
disabled.

st ack_base

Pointer to a memory pointer to hold the starting address of
the task’s stack.

si ze

Pointer to a variable to hold the total number of bytes in the
task’s stack.

m ni mum st ack

Pointer to a variable to hold the minimum amount of bytes
left in the task’s stack.

Chapter 3 - Task Control

Task Status

The following table summarizes the possible values for the t ask_st at us parameter.

Parameter Value Task Status

NU_READY Ready to execute.

NU_PURE_SUSPEND Unconditionally suspended.

NU_FI NI SHED Returned from the entry function.

NU_TERM NATED Terminated.

NU_SLEEP_SUSPEND Sleeping.

NU_NMAI LBOX_SUSPEND Suspended on a mailbox.

NU_QUEUE_SUSPEND Suspended on a queue.

NU_PI PE_SUSPEND Suspended on a pipe.

NU_EVENT_SUSPEND Suspended on an event-flag group.

NU_SEVMAPHORE_SUSPEND Suspended on a semaphore.

NU_MEMORY_SUSPEND Suspended on a dynamic-memory pool.

NU_PARTI TI ON_SUSPEND | Suspended on a memory-partition pool.

NU_DRI VER_SUSPEND Suspended from an I/O Driver request.
Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_TASK Indicates the task pointer is invalid.

35

Nucleus PLUS Reference Manual

Example
NU_TASK Task;
CHAR t ask_nane[8] ;
DATA_ELEMENT t ask_st at us;
UNSI GNED schedul ed_count ;
OPTI ON priority;
OPTI ON pr eenpt ;
UNSI GNED time_slice;
VA D *st ack_base;
UNSI GNED st ack_si ze;
UNSI GNED m ni num st ack;
STATUS st at us;

/* Obtain informati on about the task control block "Task".
Assume "Task" has previously been created with the Nucl eus
PLUS NU Create_Task service call. */
status = NU Task_I nformati on(& ask, task_nane, &task_status,
&schedul ed_count, &priority, &preenpt,
& inme_slice, &stack_base,
&st ack_si ze, &m ni mum st ack) ;
/* |f status is NU SUCCESS, the other information is accurate. */

See Also

NU_Creat e_Task, NU Del et e_Task, NU_Established_Tasks,
NU Task_Poi nters, NU Reset_ Task

36

Chapter 3 - Task Control

NU Task Pointers

UNSI GNED NU_Task_Poi nt er s(NU_TASK **poi nter _|i st,
UNSI GNED mexi mum _poi nt ers)

This service builds a sequential list of pointers to all established tasks in the system.

parameter poi nter _| i st points to the location for building the list of pointers,
while maxi mum poi nt er s indicates the maximum size of the list. This service
returns the actual number of pointers in the list. Additionally, the list is ordered
from oldest to newest member.

T NOTE: Tasks that have been deleted are no longer considered established. The

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
pointer_list Pointer to an array of NU_TASK pointers. This array will be
filled with pointers to established tasks in the system.
Maxi mum poi nters The maximum number of NU_TASK pointers to place into the
array. Typically, this will be the size of the poi nter _| i st
array.

Return Value

This service call returns the number of NU_TASK pointers placed into the array.

Example
/* Define an array capabl e of hol ding 20 task pointers. */
NU_TASK *Poi nt er _Array[20] ;
UNSI GNED nunber ;

/* Obtain a list of currently active task pointers (Max of 20). */
nunber = NU Task_Poi nt er s(&Poi nter _Array[0], 20);

/* At this point, number contains the actual number of
pointers in the list. */

See Also

NU_Creat e_Task, NU Del ete_Task, NU _Established_Tasks,
NU_Task_I nformati on, NU Reset_Task

37

Nucleus PLUS Reference Manual

NU Ter m nat e_Task

STATUS NU_Ter mi nat e_Task(NU_TASK *t ask)

This service terminates the task specified by the task parameter.

& NOTE 1: A terminated task cannot execute again until it is reset.

NOTE 2: When calling this function from a signal handler, the task whose signal
& handler is executing cannot be terminated.

Overview
Option
Tasking Changes Yes
Allowed From HISR, Signal Handler, Task
Category Task Control Services
Parameters
Parameter Meaning
task Pointer to the user-supplied task control block. NOTE: All

subsequent requests made to this task require this pointer.

Return Value

Parameter Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TASK Indicates the task pointer is invalid.
Example
NU_TASK Task;

STATUS st at us;

/* Term nate the task control block “Task”.
Assume “Task” has previously been created with the Nucl eus
PLUS NU Create_Task service call. */

status = NU Term nat e_Task(&Task) ;

See Also
NU_Suspend_Task, NU Resune_Task, NU Reset Task, NU _Task_Infornation

38

Dynamic
Memory

Introduction

Suspension

Dynamic Creation

Determinism

Dynamic Memory Pool Information
Function Reference

Example Source Code

39

Nucleus PLUS Reference Manual

Introduction

A dynamic memory pool contains a user-specified number of bytes. The memory location
of the pool is determined by the application. Variable-length allocation and deallocation
services are provided for the dynamic memory pool. Allocations are performed in a first-
fit manner, i.e. the first available memory that satisfies the request is allocated. If the
allocated block is significantly larger than the request, the unused memory is returned to
the dynamic memory pool.

Each allocation from a memory pool requires some additional overhead to allow for its
pointer structure. This overhead is consumed out of the memory pool from which the
allocation is requested. See the section, “Dynamic Memory Data Structures” of the
Nucleus PLUS Internals Manual, under the “Dynamic Memory Pool Header Structure”
subsection, for full details.

Suspension

The allocate dynamic memory service provides options for unconditional suspension,
suspension with a timeout, and no suspension.

A task attempting to allocate dynamic memory from a pool that does not currently have
enough available memory may suspend. Resumption of the task is possible when enough
previously allocated memory is returned to the pool.

Multiple tasks may suspend on a single dynamic memory pool. Tasks are suspended in
either FIFO or priority order, depending on how the dynamic memory pool was created. If
the dynamic memory pool supports FIFO suspension, tasks are resumed in the order in
which they were suspended. Otherwise, if the dynamic memory pool supports priority
suspension, tasks are resumed from high priority to low priority.

Dynamic Creation

Nucleus PLUS dynamic memory pools are created and deleted dynamically. There is no
preset limit on the number of dynamic memory pools an application may have. Each
dynamic memory pool requires a control block and a pointer to the actual dynamic
memory area. The memory for both the control block and the memory area is supplied by
the application.

40

Chapter 4 - Dynamic Memory

Determinism

Allocating memory from a dynamic memory pool is inherently undeterministic. This is
largely due to possible memory fragmentation within the pool. The first-fit algorithm is
basically a linear search, and as a result the worst-case performance depends on the
amount of fragmentation.

However, memory deallocation is constant. Processing time required to suspend a task in
priority order is affected by the number of tasks currently suspended on the dynamic
memory pool.

Dynamic Memory Pool Information

Application tasks may obtain a list of active dynamic memory pools. Detailed information
about each dynamic memory pool is also available. This information includes the dynamic
memory pool name, starting pool address, total size, free bytes, number of tasks
suspended, and the identity of the first suspended task.

Function Reference

The following function reference contains all functions related to the Nucleus PLUS
dynamic memory component. The following functions are contained in this reference:

NU_Al | ocat e_Menory

NU_Cr eat e_Menory_Pool
NU_Deal | ocat e_Menory

NU_Del et e_Menory_Pool

NU_Est abl i shed_Menory_Pool s
NU_Menory_Pool _I nformation
NU_Menory_Pool _Pointers

41

Nucleus PLUS Reference Manual

NU Al | ocat e_Menory

STATUS NU_Al | ocat e_Menor y(NU_MEMORY_POOL *pool ,

VO D **return_pointer,
UNSI GNED si ze,
UNSI GNED suspend)

This service allocates a block of memory from the specified dynamic memory pool.

Overview
Option
Tasking Changes Yes
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
pool Pointer to the dynamic memory pool.

return_pointer

Pointer to the caller’s memory pointer. On a successful
request, the address of the allocated block is placed in the
caller’s memory pointer.

si ze Specifies the number of bytes to allocate from the dynamic
memory pool. A value of zero will return an error if error-
checking is enabled.
suspend Specifies whether or not to suspend the calling task if the
requested amount of memory is not available.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not
the request can be satisfied. Note: this is the only valid
option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until the requested memory is
available.

timeout val ue

(1-4,294,967,293). The calling task is suspended until the
memory is available or until the specified number of ticks
has expired.

42

Chapter 4 - Dynamic Memory

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_POOL Indicates the dynamic memory pool is invalid.

NU_I'NVALI D_POI NTER | Indicates the return pointer is NULL.

NU_I NVALI D_SI ZE Indicates an invalid size request.

NU_I NVALI D_SUSPEND | Indicates that suspend attempted from a non-task thread.

NU_NO_MEMORY Indicates the memory request could not be immediately
satisfied.

NU_TI MEQUT Indicates the requested memory is still unavailable even
after suspending for the specified timeout value.

NU_POOL_DELETED Dynamic memory pool was deleted while the task was
suspended.

Example
NU_MEMORY_POOL Pool ;
VA D menmory_ptr;

STATUS st at us

/* Allocate a 300-byte bl ock of menory with the menory pool
control block “Pool”. |f the requested nmenory is
unavai |l abl e, suspend the calling task unconditionally.
Assunme “Pool” has previously been created with the
Nucl eus PLUS NU Create_Menory_Pool service call. */
status = NU_ Al |l ocate_Menory(&Pool, &renory_ptr, 300, NU_SUSPEND);

/* At this point, status indicates whether the service
request was successful. */

See Also
NU_Deal | ocate_Menory, NU _Menory_Pool _I nformation

43

Nucleus PLUS Reference Manual

NU Create_ Menory_Pool

STATUS NU_Creat e_Menory_Pool (NU_MEMORY_POOL *pool ,

CHAR *nane,
VO D *start_address,

UNSI GNED pool _si ze,
UNSI GNED mi n_al | ocati on,
OPTI ON suspend_t ype)

This service creates a dynamic memory pool inside a memory area specified by the caller.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
pool Pointer to the user-supplied memory pool control block. Note:
all subsequent requests made to the memory pool require this
pointer.
nane

Pointer to an 8-character name for the memory pool. The
name does not have to be null-terminated.

start_address

Specifies the starting address for the memory pool.

pool _si ze

Specifies the number of bytes in the memory pool.

m n_al | ocation

Specifies the minimum number of bytes in each allocation
from this memory pool.

suspend_type

Specifies how tasks suspend on the memory pool. Valid
options for this parameter are NU_FI FO and

NU_PRI ORI TY, which represent First-In-First-Out (FIFO)
and priority-order task suspension, respectively.

44

Chapter 4 - Dynamic Memory

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_POOL Indicates the memory pool control block pointer is NULL

or is already in use.

NU_I NVALI D_MEMORY Indicates the memory area specified by the start address is
invalid.

NU_I NVALI D_SI ZE Indicates the pool size and/or the minimum allocation size
is invalid.

NU_I'NVALI D_SUSPEND | Indicates the suspend_t ype parameter is invalid.

Example
/* Assunme dynamic nenory control block “Pool” is defined as

a global data structure. This is one of several ways to
al l ocate a control block. */

NU_MEMORY_PCOL Pool ;

}* Assume status is defined locally. */

STATUS status; /* Menory Pool creation status */

/* Create a dynamic menory pool of 4000-bytes starting
at the absol ute address of 0xA000. M ninmum all ocation
size is 30 bytes. Tasks suspend on the pool in order
of priority. */

status = NU Create_Menory_Pool (&Pool, “any nanme”, (VO D *) 0xA000,
4000, 30, NU PRICRITY);

/* At this point status indicates if the service was successful. */

See Also

NU _Del ete_Menory_Pool, NU _Established_Menory_ Pool s,
NU_Menory_Pool _Poi nters, NU _Menory_Pool _I nformation

45

Nucleus PLUS Reference Manual

NU Deal | ocat e_Menory
STATUS NU _Deal | ocat e_Menory (VO D *nenory)

This service returns the memory block pointed to by menory back to the associated
dynamic memory pool.

Overview
Option
Tasking Changes Yes
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
memory Pointer to a memory block previously allocated with

NU_Al | ocat e_Menory.

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I'NVALI D_POI NTER | Indicates the memory block pointer is NULL, is not
currently allocated, or is invalid.

Example
STATUS st at us;

/* Deal | ocate the nenory bl ock pointed to by “menory.” */
status = NU_Deal | ocat e_Menory(nmenory) ;

/* At this point status indicates if the service was successful. */

See Also
NU_Al | ocat e_Menory, NU Menory_Pool _I nformation

46

Chapter 4 - Dynamic Memory

NU Del et e_Menory_Pool

STATUS NU_Del et e_Menory_Pool (NU_MEMORY_POOL *pool)

This service deletes a previously created dynamic memory pool. The parameter pool

identifies the dynamic memory pool to delete. Tasks suspended on this dynamic memory
pool are resumed with the appropriate error status. The application must prevent the use
of this dynamic memory pool during and after deletion.

Overview
Option
Tasking Changes Yes
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
pool Pointer to the user-supplied memory pool control block that

has been previously created with NU_Cr eat e_Menory_Pool .

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_POOL Indicates the dynamic memory pool pointer is invalid.
Example
NU_MEMORY_POOL Pool ;
STATUS st at us
}* Del ete the nenory pool control block “Pool”. Assune

“Pool " has previously been created with the Nucl eus
PLUS NU Create_Menory_Pool service call. */
status = NU_Del ete_Menory_Pool (&Pool) ;

/* At this point,

status indicates whether the service

request was successful. */

See Also

NU_Create_Menory_Pool, NU Established_Menory_Pool s,
NU_Menory_Pool _Poi nters, NU _Menory_Pool _I nformation

47

Nucleus PLUS Reference Manual

NU Est abl i shed_Menory_ Pool s
UNSI GNED NU_Est abl i shed_Menory_Pool s(VA D)

This service returns the number of established dynamic-memory pools. All created
dynamic-memory pools are considered established. Deleted dynamic-memory pools are
no longer considered established.

Overview

Option

Tasking Changes No

Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Memory Services

Parameters

None

Return Value

This service call returns the number of created Memory Pools in the system.

Example
UNSI GNED total _nenory_pool s;

/* Cbtain the total nunber of dynami c nmenory pools. */
total _nenory_pools = NU_Established_Menory_Pool s();

See Also

NU_Creat e_Menory_Pool, NU Del ete_Menory_Pool ,
NU_Menory_Pool _Poi nters, NU Menory_Pool _I nformation

48

Chapter 4 - Dynamic Memory

NU _Menory_ Pool | nformation

STATUS NU_Menory_Pool _I nformati on(NU_MEMORY_POOL *pool ,

CHAR *nane,

VO D **start _address,
UNSI GNED *pool _si ze,

UNSI GNED *mi n_al | ocati on,
UNSI GNED *avai | abl e,

OPTI ON *suspend_t ype,
UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

This service returns various information about the specified dynamic memory pool.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
pool Pointer to the dynamic-memory pool.
nane

Pointer to an 8-character destination area for the dynamic-
memory pool’s name.

start_address

Pointer to a memory pointer for holding the starting address
of the pool.

pool _si ze

Pointer to a variable for holding the number of bytes in
dynamic memory pool.

m n_al | ocation

Pointer to a variable for holding the minimum number of
bytes for each allocation from this pool.

avai |l abl e

Pointer to a variable for holding the number of available bytes
in the pool.

suspend_t ype

Pointer to a variable for holding the task suspend type. Valid
task suspend types are NU_FI FO and NU PRI ORI TY.

tasks_waiting

Pointer to a variable for holding the number of tasks waiting
on the dynamic-memory pool.

first_task

Pointer to a task pointer. The pointer of the first suspended
task is placed in this task pointer.

49

Nucleus PLUS Reference Manual

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_POCOL Indicates the dynamic memory pool pointer is invalid.
Example

NU_MEMORY_POOL Pool ;

CHAR pool _nane[8] ;

VA D *start_address;

UNSI GNED pool _si ze;

UNSI GNED m n_al | ocati on;

UNSI GNED avai | abl e;

OPTI ON suspend_t ype;

UNSI GNED t asks_suspended;

NU_TASK *first_task;

STATUS status

/* Cbtain infornation about the nenory pool control bl ock
“Pool ”. Assume “Pool” has previously been created with
the Nucl eus PLUS NU Create_Menory_Pool service call. */

status = NU_Menory_Pool _I nf ormati on(&Pool , pool _nane,

&start_address, &pool _size,

&m n_al | ocati on,

&avai | abl e, &suspend_t ype,

&t asks_suspended, &first_task);

/* If status is NU SUCCESS, the other information is accurate. */

See Also

NU_Create_Menory_Pool , NU Del et e_Menory_Pool
NU_Est abl i shed_Menory_Pool s, NU Menory_Pool Pointers

50

Chapter 4 - Dynamic Memory

NU _Menory_ Pool Pointers

UNSI GNED NU_Menory_Pool _Poi nt er s(NU_MEMORY_POCL **poi nter_|ist,

UNSI GNED maxi mum_poi nt ers)

This service builds a sequential list of pointers to all established dynamic memory pools in
the system.

A

NOTE: Dynamic-memory pools that have been deleted are no longer considered
established. The parameter poi nter _|ist points to the location for building the
list of pointers, while maxi mum poi nt ers indicates the maximum size of the
list. This service returns the actual number of pointers in the list. Additionally,
the list is ordered from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
pointer _list Pointer to an array of NU_MEMORY_POOL pointers. This
array will be filled with pointers of established memory
pools in the system.
maxi num_poi nt ers The maximum number of NU_MEMORY_PQOCL pointers to
place into the array. Typically, this will be the size of the
poi nter _|i st array.

Return Value

This service call returns the number of created Memory Pools in the system.

Example

/* Define an array capable of holding 20 dynam c nenory
pool pointers. */

NU_MEMORY_POOL *Poi nt er _Array[20] ;

UNSI GNED nunber ;

/* Cbtain a list of currently active dynani c- nmenory
pool pointers (Maxi mum of 20). */

nurmber = NU_Menory_Pool _Poi nt er s(&Poi nter _Array[0], 20);

/* At this point, nunber contains the actual nunber of
pointers in the list. */

See Also

NU_Create_Menory_Pool , NU Del et e_Menory_Pool ,
NU_Est abl i shed_Menory_Pool s, NU_Menory_Pool _I nformation

51

N

ucleus PLUS Reference Manual

Example Source Code

52

The following program demonstrates how the Nucleus PLUS dynamic memory pool
component could be used to implement a memory allocation scheme similar to that of the
ANSI C malloc and free. A single dynamic memory pool is created out of which all
memory requests are allocated. The memory pool is created in the function
mermory_init, and is deleted in menory_dei nit. All memory can then be allocated
through the function calls menory_al | ocat e, and nenory_startup_al | ocate. The
two separate calls are used because, in this example, during a running program we would
like for tasks to be suspended when a memory request cannot be immediately satisfied.
The function menory_al | ocat e could be used during a running program to request
memory. When a request cannot be satisfied the calling task would be suspended.
However, suspension cannot be requested in the startup function
Application_lnitialize, so a separate function startup_nenory_al |l ocate is
used which does not request suspension when memory requests cannot be immediately
satisfied.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

A single NU_MEMORY_PQOCL control block is created. This memory pool control block will
be later passed to the NU_Create_Menory_Pool service call, which will set up the
memory pool for use.

NU_MEMORY_POOL Syst em Menory;

In this example, the functions nmermory_init, and menory_deinit will be used to
initialize and de-initialize the memory pool which is to be used. Specific to Nucleus
PLUS, the function menory_i ni t will be used to create the memory pool out of which all
memory will be allocated. The function nenmory_dei nit will be used to delete the
dynamic memory pool. Similarly, all memory allocation requests would be made through
the menory_al l ocate and nmenory_startup_al |l ocate service calls. Finally, all
memory deallocations would be made through the menory_f r ee function.

VO D *nenory_al | ocat e(UNSI GNED al | oc_si ze) ;

VO D *nenory_startup_al | ocat e(UNSI GNED al | oc_si ze) ;

VO D nenory_free(VO D *menory_ptr);

VO D nmenory_init (VO D *start_addr, UNSI GNED si ze) ;
VO D nenory_deinit();

The function nenory_init is used to create the dynamic memory pool,
Syst em Menory, out of which all memory will be allocated. The function is passed the
starting address, and the size of the pool to create. These parameters are then passed to the
NU_Creat e_Menory_Pool call to create the memory pool, and associate it with the
Syst em Menory control block.

Chapter 4 - Dynamic Memory

VO D nmenory_init(VOD *start_addr, UNSI GNED si ze)
{

Make the call to NU_Creat e_Menory_Pool to create the dynamic memory pool, and
associate the memory pool with the Syst em Menory control block. The Syst em Menory
pool will be created such that the minimum allocation request that will be satisfied is a
request for 128 bytes of memory. Also, tasks that choose to suspend when a request cannot
be satisfied will be resumed in priority order, as indicated by the NU_PRI ORI TY
parameter.

if (NU_Create_Menory_Pool (&System Menory, "sysmem', start_addr,
size, 128, NU PRI ORI TY) == NU_SUCCESS)

/* The menory pool was successfully created. */

}

el se

/* There was an error creating the menory pool. */

}

Use NU_Del et e_Menory_Pool to delete the memory pool. The only parameter needed
by this call is a pointer to the NU_MEMORY_POCOL control block. Note that any memory
allocations that were not deallocated will remain allocated.

VO D nmenory_deinit()
i f (NU_Del ete_Menory_Pool (&Syst em Menory) == NU_SUCCESS)

/* The menory pool was successfully del eted. */

}

el se
/* There was an error deleting the menory pool. */

}

The function memory_allocate would be used to allocate any required memory. The only
parameter necessary for this function call is the size, in bytes, of the allocation request.
The function will then attempt to allocate the memory with a call to
NU Al | ocate_Menory. If the request is succesfull (as indicated by the
NU_Al | ocate_Menory service call returning NU_SUCCESS) then a pointer to the
allocated memory is returned to the calling function. Otherwise NU_NULL is returned.

VO D *menory_al | ocat e(UNSI GNED al | oc_si ze)
{

The void pointer, t enp_ptr will be used to return the allocated memory to the calling
function. It will be passed as a parameter to the NU_Al | ocat e_Menory service call. If the
call is successful, then t enp_ptr will contain a valid pointer to the newly allocated
memory.

53

Nucleus PLUS Reference Manual

VO D *tenp_ptr;

The NU_Al | ocat e_Menory service call will request the memory allocation out of the
Syst em Menory dynamic memory pool. If the request can be satisfied, then t enp_pt r
will contain a pointer to the newly allocated memory, and NU_SUCCESS will be returned.
If the request cannot be immediately satisfied, then the calling task will be suspended, as
indicated by the NU_SUSPEND parameter. Note that this call should only be used from a
task, and not from Application_lnitialize because suspension cannot be requested
from the Appl i cation_Initialize function.

if (NU_AIocate_Menory(&System Menory, & enp_ptr, alloc_size,
NU_SUSPEND) == NU_SUCCESS)

{

return tenp_ptr;
}
el se
{

return NU_NULL;
}

}

Similar to menory_al | ocat e, the function menory_startup_al | ocat e will use the
NU_Al | ocat e_Menory service call to request the memory allocation out of the
Syst em Menory dynamic memory pool. However, if the request cannot be immediately
satisfied, the function menory_st art up_al | ocat e will not suspend, as indicated by the
NU_NO_SUSPEND parameter in NU_Al | ocat e_Menor y. Therefore, this function would be
used to allocate memory from the Appl i cation_lnitiali ze function.

VO D *nenory_startup_al | ocat e(UNSI GNED al | oc_si ze)

{
VO D *tenp_ptr;

Use NU_Al | ocat e_Menory to request the allocation out of the Syst em Menory dynamic
memory pool.

if (NU_AlIocate Menory(&System Menory, & enp_ptr, alloc_size,
NU_NO_SUSPEND) == NU_SUCCESS)

return tenp_ptr;
}

el se

{

/* an error occurred allocating menory. */

}
}

54

Chapter 4 - Dynamic Memory

The mermory_free function would be used to deallocate any previously allocated
memory. It does this with a call to NU_Deal | ocat e_Menory.

VO D menory_free(VAO D *nmenory_ptr)
{

Use NU_Deal | ocat e_Menory to return the memory allocation to the Syst em Menory
dynamic memory pool.

if (NU_Deal | ocate_Menory(nmenory_ptr) == NU_SUCCESS)
/* Menory successfully deal | ocated. */
}

el se

/* An error occurred deal | ocati ng menory. */

55

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

56

Partition
Memory

Introduction

Function Reference

Example Source Code

57

Nucleus PLUS Reference Manual

Introduction

A partition memory pool contains a specific number of fixed-size memory partitions. The
memory location of the pool, the number of bytes in the pool, and the number of bytes in
each partition are determined by the application. Individual partitions are allocated and
deallocated from the partition memory pool.

Allocation from a memory pool requires some additional overhead to allow for its pointer
structure. See the section, “Partition Memory Data Structures” of the Nucleus PLUS
Internals Manual, under the “Partition Memory Pool Header Structure” subsection, for full
details.

Suspension

The allocate partition service provides options for unconditional suspension, suspension
with a timeout, and no suspension.

A task attempting to allocate a partition from an empty pool can suspend. Resumption of
that task is possible when a partition is returned to the pool.

Multiple tasks may suspend on a single partition memory pool. Tasks are suspended in
either FIFO or priority order, depending on how the partition memory pool was created. If
the partition memory pool supports FIFO suspension, tasks are resumed in the order in
which they were suspended. Otherwise, if the partition memory pool supports priority
suspension, tasks are resumed from high priority to low priority.

Dynamic Creation

Nucleus PLUS partition memory pools are created and deleted dynamically. There is no
preset limit on the number of partition memory pools an application may have. Each
partition memory pool requires a control block and a pointer to the memory area for the
partition. The memory for both the control block and the partition area is supplied by the
application.

Determinism

Since searching is completely avoided, processing required for allocating and deallocating
partitions is fast and constant. However, the processing time required to suspend a task in
priority order is affected by the number of tasks currently suspended on the partition
memory pool.

58

Chapter 5 - Partition Memory

Partition Information

Application tasks may obtain a list of active partition memory pools. Detailed information
about each partition memory pool is also available. This information includes the partition
memory pool name, starting pool address, total partitions, partition size, remaining
partitions, number of tasks suspended, and the identity of the first suspended task.

Function Reference

The following function reference contains all functions related to the Nucleus PLUS
partition memory component. The following functions are contained in this reference:

NU_Al |l ocate_Partition

NU _Create_Parition_Pool

NU Deal | ocate_Partition

NU Del ete_Partiti on_Pool

NU_Est abl i shed_Partition_Pool s
NU_Partition_Pool _I nformation
NU_Partition_Pool Pointers

59

Nucleus PLUS Reference Manual

NU Al | ocate Partition

STATUS NU_Al | ocate_Partiti on(NU_PARTI TI ON_POCL *pool ,

VO D **return_pointer,
UNSI GNED suspend)

This service allocates a memory partition from the specified memory partition pool. Note
that the size of the memory partition is defined when the memory partition pool is created.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
pool Pointer to the memory partition pool.
return_pointer Pointer to the caller’s memory pointer. On a successful request,
the address of the allocated memory partition is placed in the
caller’s memory pointer.
suspend Specifies whether to suspend the calling task if there are no
memory partitions available.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not the
request can be satisfied. NOTE: This is the only valid option if
the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until a memory partition is
available.

ti meout val ue

(1 - 4,294,967, 293). The calling task is suspended until a
memory partition is available, or until the specified number of
ticks has expired.

60

Chapter 5 - Partition Memory

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_POOL Indicates the memory partition pool pointer is invalid.

NU_I'NVALI D_POI NTER | Indicates the return pointer is NULL.
NU_I NVALI D_SUSPEND | Indicates that a suspend was attempted from a non-task

thread.
NU_NO_PARTI TI ON Indicates the memory partition request could not be
immediately satisfied.
NU_TI MEQUT Indicates that no memory partition is available even after
suspending for the specified timeout value.
NU_POOL_DELETED Partition memory pool was deleted while the task was
suspended.
Example
NU_PARTI TION_POOL Pool ;
VA D *menory_ptr;
STATUS st at us

/* Allocate a nenory partition with the nenory partition
pool control block “Pool”. If there are no partitions
avail abl e, suspend the calling task unconditionally.
Assunme “Pool” has previously been created with the
Nucl eus PLUS NU Create Partition_Pool service call.*/

status = NU Al |l ocate_Partition(&Pool, &renory_ptr,

NU_SUSPEND) ;
/* At this point, status indicates whether the
servi ce request was successful. */
See Also

NU Create_Partition_Pool, NU Deallocate_Partition,
NU_Partition_Pool _I nformation

61

Nucleus PLUS Reference Manual

NU Create Partition_Pool

STATUS NU Create_Partition_Pool (NU_PARTI TI ON_POOL *pool,
CHAR *nane, VO D *start_address,
UNSI GNED pool _si ze,
UNSI GNED partition_size,
OPTI ON suspend_t ype)

This service creates a pool of fixed-size memory partitions inside a memory area specified
by the caller.

Overview

Option

Tasking Changes No

Allowed From Application_Initialize, HISR, Signal Handler, Task

Category Memory Services

Parameters

Parameter Meaning

pool Pointer to the user-supplied partition pool control block.
NOTE: Subsequent requests made to this partition pool require
this pointer.

name Pointer to an 8-character name for the partition pool. The
name does not have to be null-terminated.

start_address Specifies the starting address for the fixed-size memory
partition pool.

pool _si ze Specifies the total number of bytes in the memory area.

partition_size Specifies the number of bytes for each partition in the pool.
There is a small amount of memory “overhead” associated with
each partition. This overhead is required by the two data
pointers used.

suspend_t ype Specifies how tasks suspend on the partition pool. Valid
options for this parameter are NU_FI FO and NU_PRI ORI TY,
which represent First-In-First-Out (FIFO) and priority-order
task suspension, respectively.

62

Chapter 5 - Partition Memory

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_POOL Indicates the partition pool control block pointer is NULL
or is already in use.

NU_I NVALI D_MEMORY Indicates the memory area specified by the
start _address is invalid.

NU_I NVALI D_SI ZE Indicates the partition size is either O or larger than the
total partition memory area.

NU_I'NVALI D_SUSPEND | Indicates the suspend_type parameter is invalid.

Example
/* Assume partition menory control block “Pool” is defined
as a global data structure. This is one of several ways
to allocate a control block. */

NU_PARTI TION POOL Pool ;

/* Assume status is defined locally. */
STATUS st at us; /* Partition Pool creation status */
/* Create a partition nenory pool of 40-byte nenory partitions,

in a 2000-byte nmenory area starting at the absol ute address
of 0xB000. Task suspend on the pool in FlIFO order. */

status = NU Create_Partition_Pool (&ool, “any nane”,
(VO D *) 0xB000, 2000,
40, NU FIFO);
/* At this point status indicates if the service was
successful . */
See Also

NU Del ete_Partition_Pool, NU Established Partition_Pools,
NU Partition_Pool Pointers, NU Partition_Pool Infornmation

63

Nucleus PLUS Reference Manual

NU Deal | ocate Partition
STATUS NU Deal | ocate_Partition(VOD *partition)

This service returns the memory partition pointed to by partition back to the
associated pool.

Overview
Option
Tasking Changes Yes
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
memory Pointer to a memory partition previously allocated with

NU_ Al | ocate Partition.

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_PO NTER | Indicates the memory partition pointer is NULL, is not
currently allocated, or is invalid.

Example
STATUS st at us;

/* Deal | ocate the nenory partition pointed to by “partition.” */
status = NU_Deal | ocate_Partition(partition);

/* At this point status indicates if the service was successful. */

See Also

NU Al l ocate_Partition, NU Partition_Pool | nformation

64

Chapter 5 - Partition Memory

NU Del ete Partition_Pool
STATUS NU Del ete_Partiti on_Pool (NU_PARTI TI ON_POCOL *pool)

This service deletes a previously created memory partition pool. The parameter pool

identifies the memory partition pool to delete. Tasks suspended on this memory partition
pool are resumed with the appropriate error status. The application must prevent the use
of this memory partition pool during and after deletion.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
pool Pointer to the user-supplied partition pool control block that has

been previously created with NU_Creat e_Parti ti on_Pool .

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_POOL | Indicates the memory partition pool pointer is invalid.
Example
NU_PARTI TION_POOL Pool ;
STATUS st at us

/* Delete the partition pool control block “Pool”.
Assume “Pool” has previously been created with the
Nucl eus PLUS NU Create_Partition_Pool service call.*/

status = NU Del ete_Partition_Pool (&Pool);

/* At this point, status indicates whether the service
request was successful. */

See Also

NU Create_Partition_Pool, NU Established Partition_Pools,
NU Partition_Pool _Pointers, NU Partition_Pool _Information

65

Nucleus PLUS Reference Manual

NU Est abl i shed Partition_ Pools
UNSI GNED NU_Est abl i shed_Partiti on_Pool s(VO D)

This service returns the number of established memory-partition pools. All created
memory-partition pools are considered established. Deleted memory-partition pools are
no longer considered established.

Overview

Option
Tasking Changes | No

Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Memory Services

Parameters
None
Return Value

This service call returns the number of created partition pools in the system.

Example
UNSI GNED total _partition_pools;

/* Cbtain the total nunber of nenory partition pools. */
total _partition_pools = NU Established_Partition_Pool s();

See Also

NU Create_Partition_Pool, NU Delete_Partition_Pool,
NU Partition_Pool Pointers, NU Partition_Pool Information

66

Chapter 5 - Partition Memory

NU Partition_Pool Information

STATUS NU_Partition_Pool I nformati on(NU_PARTI TI ON_POOL *pool ,

CHAR *nane,

VO D **start_address,
UNSI GNED *pool _si ze,

UNSI GNED *partition_size,
UNSI GNED *avai | abl e,

UNSI GNED *al | ocat ed,

OPTI ON *suspend_t ype,
UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

This service returns various information about the specified partition memory pool.

Overview
Option
Tasking Changes No
Allowed From Application_|lnitialize, HISR, Signal Handler, task
Category Memory Services
Parameters
Par anet er Meaning
pool Pointer to the partition pool.
nane Pointer to an 8-character destination area for the partition pool’s

name.

start _address

Pointer to a memory pointer for holding the starting address of
the pool.

pool _si ze

Pointer to a variable for holding the total number of bytes in the
partition pool.

partition_size

Pointer to a variable for holding the number of bytes in each
memory partition.

avai |l abl e

Pointer to a variable for holding the number of available
partitions in the pool.

al | ocat ed

Pointer to a variable for holding the number of allocated pool
partitions.

suspend_t ype

Pointer to a variable for holding the task suspend type. Valid
task suspend types are NU_FI FO and NU_PRI ORI TY.

tasks_waiting

Pointer to a variable for holding the number of tasks waiting on
the partition pool.

first_task

Pointer to a task pointer. The pointer of the first suspended task
is placed in this task pointer.

67

Nucleus PLUS Reference Manual

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_T NVALI D_POOL

Indicates the partition pool pointer is invalid.

Example

NU_PARTI TI ON_POOL
CHAR

Pool ;
pool _nane[8] ;

VA D *start_address;
UNSI GNED pool _si ze;
UNSI GNED partition_size;
UNSI GNED avai | abl e;
UNSI GNED al | ocat ed;
OPTI ON suspend_t ype;
UNSI GNED t asks_suspended;
NU_TASK *first_task;

st at us

STATUS

/* Cbtain infornation about the partition pool control

bl ock “Pool ”.

with the Nucl eus PLUS NU Create_Partition_Pool

st at us

Assune “Pool”

has previously been created

service call. */
NU _Partition_Pool _I nfornation(&Pool, pool _nang,
&start_address, &pool _size,
&partition_size, &avail able,

&al | ocat ed, &suspend_type,
&t asks_suspended,
&first_task);

/* If status is NU_SUCCESS,

See Also

68

NU Create_Partition_Pool,

NU_Est abl i shed_Partiti on_Pool s,

the other information is accurate. */

NU Del ete_Partition_Pool,
NU_Partition_Pool _Pointers

Chapter 5 - Partition Memory

NU Partition_Pool Pointers

UNSI GNED NU Partition_Pool Pointers(NU_PARTI TI ON_POOL **pointer_list,
UNSI GNED mexi mum_poi nt ers)

This service builds a sequential list of pointers to all established memory partition pools in
the system.

NOTE: Memory partition pools that have been deleted are no longer considered
established. The parameter pointer_list points to the location used for
building the list of pointers, while maxi num poi nters indicates the maximum
size of the list. This service returns the actual number of pointers in the list.
Additionally, the list is ordered from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Memory Services
Parameters
Parameter Meaning
poi nter_list Pointer to an array of NU_PARTI TI ON_POOL pointers. This
array will be filled with pointers of established partition pools
in the system.
Maxi mum_poi nters | The maximum number of NU_PARTI TI ON_POOL pointers to
place into the array. Typically, this will be the size of the
poi nter_|ist array.

Return Value

This service call returns the number of created Memory Pools in the system.

Example

/* Define an array capable of hol ding 20 nenory
partition pool pointers. */

NU_PARTI TI ON_POOL *Poi nt er _Array[20] ;

UNSI GNED nunber ;

/* Cbtain a list of currently active nmenory partition
pool pointers (Maxi mum of 20). */
nunber = NU Partition_Pool _Pointers(&Pointer_Array[0], 20);

/* number contains the actual number of pointers in the list. */

See Also

NU Create_Partition_Pool, NU Delete Partition_Pool,
NU_Est abl i shed_Partition_Pools, NU Partition_Pool _Information

69

Nucleus PLUS Reference Manual

Example Source Code

70

The following program demonstrates how the Nucleus PLUS partition memory pool
component could be used to implement a memory allocation scheme similar to that of the
ANSI C malloc and free. A single partition memory pool is created out of which all
memory requests are allocated. The memory pool is created in the function
menory_i nit, and is deleted in menory_dei ni t. All memory can then be allocated
through the function calls menory_al | ocat e, and menory_start up_al | ocat e. The
two separate calls are used because, in this example, during a running program we would
like for tasks to be suspended when a memory request cannot be immediately satisfied.
The function menory_al | ocat e could be used during a running program to request
memory. When a request cannot be satisfied the calling task would be suspended.
However, suspension cannot be requested in the startup function
Application_lnitialize, so a separate function startup_nmenory_al | ocate is
used which does not request suspension when memory requests cannot be immediately
satisfied.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

A single NU_PARTI TI ON_POQOL control block is created. This partition pool control block
will be later passed to the NU_Creat e_Partiti on_Pool service call, which will set up
the partition pool for use.

NU_SEMAPHORE semaphor e_menory;
NU_PARTI TI ON_POOL System Menory;

In this example, the functions menory_init, and nenory_dei nit will be used to
initialize and de-initialize the partition memory pool which is to be used. Specific to
Nucleus PLUS, the function menory_i nit will be used to create the partition pool out
of which all memory will be allocated. The function nmenory_dei nit will be used to
delete the partition memory pool. Similarly, all memory allocation requests would be
made through the menory_al | ocat e and menory_startup_al | ocat e service calls.
Finally, all memory deallocations would be made through the nenory_f r ee function.
VO D *nenory_al | ocate();
VO D *menory_startup_al |l ocate();
VO D menory_free(VO D *nmenory_ptr);
VO D nmenory_init(VO D *start_addr, UNSI GNED si ze, UNSI GNED

partition_size);
VO D menory_deinit();

The function memory _init is used to create the partition memory pool, Syst em Menory,
out of which all memory will be allocated. The function is passed the starting address, the
size of the pool to create, and the size of each partition to be allocated. These parameters
are then passed to the NU_Create_Partiti on_Pool call to create the memory pool,
and associate it with the Syst em Menory control block.

Chapter 5 - Partition Memory

VO D nenory_init(VO D *start_addr, UNSI GNED si ze, UNSI GNED
partition_size)
{

Make the call to NU Create_Partition_Pool to create the partition pool, and
associate the memory pool with the System Menory control block. As previously
mentioned, the Syst em Menory partition pool will be created with the starting address,
size, and partition size as specified in the function parameters. The partition pool will
also be created such that tasks which choose to suspend when a request cannot be
satisfied will be resumed in priority order, as indicated by the NU_PRI ORI TY parameter.

if (NU Create_Partition_Pool (&System Menory, "sysneni, start_addr,
size, partition_size, NU PRI ORI TY)

== NU_SUCCESS)
/* Partition pool successfully created. */

£| se

. /* Error creating partition pool. */

}

Use NU_Del ete_Partition_Pool to delete the memory pool. The only parameter
needed by this call is a pointer to the NU_PARTI TI ON_POOL control block. Note that any
memory allocations that were not deallocated will remain allocated.

VA D nenory_dei nit()
if (NU Delete_Partition_Pool (&System Menory) == NU_SUCCESS)

/* Partition pool successfully deleted. */

}

el se
/* Error deleting partition pool. */

}

The function menory_al | ocat e would be used to allocate any required memory. Note
that this function does not take any parameters, unlike its dynamic memory counterpart.
Since all allocations are made in the size that was specified when the pool was created,
the size parameter is not necessary.

The function will attempt to allocate the memory with a call to NU_Al | ocat e_Menory.
If the request is succesfull (as indicated by the NU Al | ocat e_Menory service call
returning NU_SUCCESS) then a pointer to the allocated memory is returned to the calling
function. Otherwise NU_NULL is returned.

VO D *nenory_al | ocat e()

{

71

Nucleus PLUS Reference Manual

72

The void pointer, t enp_pt r will be used to return the allocated memory to the calling
function. It will be passed as a parameter to the NU_Al | ocat e_Parti ti on service call.
If the call is successful, then tenp_ptr will contain a valid pointer to the newly
allocated memory.

VO D *tenp_ptr;

The NU_Al | ocate_Partition service call will request the memory allocation out of
the System Menory partition memory pool. If the request can be satisfied, then
t enp_ptr will contain a pointer to the newly allocated memory, and NU_SUCCESS will
be returned. If the request cannot be immediately satisfied, then the calling task will be
suspended, as indicated by the NU_SUSPEND parameter. Note that this call should only be
used from a task, and not from the Application_Initialize because suspension
cannot be requested from the Appl i cati on_I ni ti al i ze function.

if (NU_Allocate_ Partition(&System Menory, & enp_ptr, NU_SUSPEND)

== NU_SUCCESS)
{
return tenmp_ptr;
}
el se
{
}

}

Similar to menory_al | ocat e, the function menory_startup_al | ocat e will use the
NU Al | ocate_Partition service call to request the memory allocation out of the
Syst em Menory partition memory pool. However, if the request cannot be immediately
satisfied, the function menory_startup_al | ocat e will not suspend, as indicated by
the NU_NO SUSPEND parameter in NU Al | ocat e_Menory. Therefore, this function
would be used to allocate memory from the Appl i cation_I nitial i ze function.

VO D *nmenory_startup_al | ocate()
{
VO D *tenp_ptr;

Use NU_Al | ocate_Partition to request the allocation out of the Syst em Menory
partition memory pool.

if (NUAllocate Partition(&System Menory, & enp_ptr, NU_NO SUSPEND)

== NU_SUCCESS)
{

return tenmp_ptr;
}
el se

/* Error in menory allocation. */

Chapter 5 - Partition Memory

The menory_free function would be used to deallocate any previously allocated
memory. It does this with a single call to NU_Deal | ocat e_Partition.

VO D nmenory_free(VAO D *nmenory_ptr)
{

Use NU_Deal | ocat e_Menory to return the memory allocation to the Syst em Menory
partition memory pool.

if (NU Deal l ocate_ Partition(&renory_ptr) == NU_SUCCESS)
{
}

el se

{
}

73

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
Ics

Gra

74

Mailboxes

Introduction

Function Reference

Example Source Code

75

Nucleus PLUS Reference Manual

Introduction

Mailboxes provide a low-overhead mechanism to transmit simple messages. Each
mailbox is capable of holding a single message the size of four 32-bit words. Messages
are sent and received by value. A send message request copies the message into the
mailbox, while a receive message request copies the message out of the mailbox.

Suspension

Send and receive mailbox services provide options for unconditional suspension,
suspension with a timeout, and no suspension.

Tasks can suspend on a mailbox for several reasons. A task attempting to receive a
message from an empty mailbox can suspend. Also, a task attempting to send a message
to a non-empty mailbox can suspend. A suspended task is resumed when the mailbox is
able to satisfy that task’s request. For example, suppose a task is suspended on a mailbox
waiting to receive a message. When a message is sent to the mailbox, the suspended task
is resumed.

Multiple tasks can suspend on a single mailbox. Tasks are suspended in either FIFO or
priority order, depending on how the mailbox was created. If the mailbox supports FIFO
suspension, tasks are resumed in the order in which they were suspended. Otherwise, if
the mailbox supports priority suspension, tasks are resumed from high priority to low

priority.

Broadcast

A mailbox message may be broadcast. This service is similar to a send request, except
that all tasks waiting for a message from the mailbox are given the broadcast message.

Dynamic Creation

Nucleus PLUS mailboxes are created and deleted dynamically. There is no preset limit on
the number of mailboxes an application may have. Each mailbox requires a control block.
The memory for the control block is supplied by the application.

Determinism

Processing time required for sending and receiving mailbox messages is constant.
However, the processing time required to suspend a task in priority order is affected by the
number of tasks currently suspended on the mailbox.

76

Chapter 6 - Mailboxes

Mailbox Information

Application tasks may obtain a list of active mailboxes. Detailed information about each
mailbox can also be obtained. This information includes the mailbox name, suspension
type, whether a message is present, and the first task waiting.

Function Reference

The following function reference contains all functions related to Nucleus PLUS
mailboxes. The following functions are contained in this reference:

NU_Br oadcast _To_Mai | box
NU_Cr eat e_Mai | box

NU_Del et e_Mai | box

NU_Est abl i shed_Mai | boxes
NU_Mai | box_I nf ormat i on
NU_Mai | box_Poi nters
NU_Recei ve_From Mai | box
NU_Reset _Mai | box
NU_Send_To_Mai | box

71

Nucleus PLUS Reference Manual

NU Broadcast To_ Mai | box

STATUS NU_Br oadcast _To_Mai | box(NU_MAI LBOX *mai | box,

VO D *nessage,
UNSI GNED suspend)

This service broadcasts a message to all tasks waiting for a message from the specified
mailbox. If no tasks are waiting, the message is simply placed in the mailbox. Each
message is equivalent in size to four UNSI GNED data elements.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
mai | box Pointer to the mailbox.
nmessage Pointer to the broadcast message.
suspend Specifies whether or not to suspend the calling task if the
mailbox already contains a message.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or
not the request can be satisfied. NOTE: This is the only
valid option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until the message can be
copied into the mailbox.

ti meout val ue

(1 —4,294,967,293). The calling task is suspended until the
message can be copied into the mailbox or until the
specified number of ticks has expired.

78

Chapter 6 - Mailboxes

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_MAI LBOX | Indicates the mailbox pointer is invalid.

NU_I'NVALI D_POI NTER | Indicates the message pointer is NULL.

NU_I NVALI D_SUSPEND | Indicates that suspend attempted from a non-task thread.

NU_MAI LBOX_FULL Indicates the message could not be immediately placed in the

mailbox because the mailbox already contains a message.

NU_TI MEQUT Indicates that the mailbox is still unable to accept the

message even after suspending for the specified timeout
value.

NU_NMAI LBOX_DELETED | Mailbox was deleted while the task was suspended.

NU_MAI LBOX_RESET Mailbox was reset while the task was suspended.

Example
NU_MAI LBOX Mai | box;
UNSI GNED messagel[4] ;
STATUS st at us
}* Build a nessage to send to a mail box. The
contents of “message” are not significant */
nessage[0] = 0x00001111;
message[1] = 0x22223333;
message[2] = 0x44445555;
nessage[3] = 0x66667777;
/* Send the message to the mail box control block “Milbox”. If the

mai | box al ready contains a nmessage, suspend for 20 timer ticks.
Assunme “Mai |l box” has previously been created with the Nucl eus
PLUS NU Create_Mil box service call. */

status = NU Broadcast_To_Mai | box(&wai | box, &mressage[0], 20);

/* At this point, status indicates whether the
servi ce request was successful. */
See Also

NU_Send_To_Mai | box, NU_Recei ve_From Mai | box, NU _Mail box_I nformation

79

Nucleus PLUS Reference Manual

NU Create Mai |l box

STATUS NU_Cr eat e_Mai | box(NU_MAI LBOX *nai | box,
CHAR *nane,
OPTI ON suspend_t ype)

This service creates a task communication mailbox. A mailbox is capable of holding a
single message. Mailbox messages are equivalent in size to four UNSI GNED data elements.

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, Task.
Category Task Communication Services.
Parameters
Parameter Meaning
mai | box Pointer to the user-supplied mailbox control block.
NOTE: All subsequent requests made to the mailbox
require this pointer.
name Pointer to an 8-character name for the mailbox. The
name does not have to be null-terminated.
suspend_t ype Specifies how tasks suspend on the mailbox. Valid options
for this parameter are NU_FI FO and NU_PRI ORI TY,
which represent First-In-First-Out (FI FO) and priority-
order task suspension, respectively.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_MAI LBOX

Indicates the mailbox control block pointer is NULL or is
already in use.

NU_I NVALI D_SUSPEND

Indicates the suspend_t ype parameter is invalid.

Chapter 6 - Mailboxes

Example
/* Assune nmail box control block “Milbox” is defined as a gl obal
data structure. This is one of several ways to allocate a
control block. */
NU_MAI LBOX Mai | box;
/* Assume status is defined locally. */

STATUS status; /* Mailbox creation status */

/* Create a mail box that manages task suspension in a Fl FO manner. */
status = NU Create_Mil box(&MWail box, “any nane”, NU_FIFO);

/* At this point status indicates if the service was successful. */

See Also

NU_Del et e_Mai | box, NU_Est abli shed_Mai | boxes, NU_Mai |l box_Poi nters,
NU_Mai | box_I nf or mati on

81

Nucleus PLUS Reference Manual

NU Del et e _Mai | box
STATUS NU_Del et e_Mai | box(NU_MAI LBOX *mai | box)

This service deletes a previously created mailbox. The parameter mai | box identifies the
mailbox to delete. Tasks suspended on this mailbox are resumed with the appropriate
error status. The application must prevent the use of this mailbox during and after
deletion.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler,
Task
Category Task Communication Services
Parameters
Parameter Meaning
mai | box Pointer to the user-supplied mailbox control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I' NVALI D_NMAI LBOX Indicates the mailbox pointer is invalid.
Example
NU_MAI LBOX Mai | box;

STATUS st at us

/* Delete the mail box control block “Milbox”. Assume “Mail box”
has previously been created with the Nucl eus PLUS
NU Create_ Mil box service call. */

status = NU_Del et e_Mai | box(&Wai | box) ;

/* At this point, status indicates whether the
servi ce request was successful. */

See Also

NU_Creat e_Mai | box, NU_Establ i shed_Mai | boxes, NU_Mi |l box_Poi nters,
NU_Mai | box_I nfornati on

82

Chapter 6 - Mailboxes

NU Est abl i shed _Mai | boxes
UNSI GNED NU_Est abl i shed_Mai | boxes (VA D)

This service returns the number of established mailboxes. All created mailboxes are
considered established. Deleted mailboxes are no longer considered established.

Overview

Option
Tasking Changes | No

Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services

Parameters

None

Return Value

This service call returns the number of created mailboxes in the system.

Example
UNSI GNED t ot al _nmi | boxes;

/* Cbtain the total nunber of nmil boxes. */
total _mail boxes = NU_Est abl i shed_Mai | boxes();

See Also

NU_Creat e_Mai | box, NU Del ete_Mail box, NU_Mil box_Poi nters,
NU_Mai | box_I nf or mati on

83

Nucleus PLUS Reference Manual

NU Mai | box_ | nformation

STATUS NU_Mai | box_I nformati on(NU_MAI LBOX *nai | box,

CHAR *nane,

OPTI ON *suspend_t ype,
DATA_ELEMENT *nessage_present,
UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

This service returns various information about the specified mailbox.

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
mai | box Pointer to the user-supplied mailbox control block.
name Pointer to an 8-character destination area for the mailbox’s

name.

suspend_type

Pointer to a variable for holding the task suspend type.
Valid task suspend types are NU_FI FO and
NU PRI ORI TY.

message_pr esent

If a message is present in the mailbox, an NU_TRUE value
is placed in the variable pointed to by this parameter.
Otherwise, if the mailbox is empty, an NU_FALSE value
is placed in the variable.

tasks_waiting

Pointer to a variable for holding the number of tasks
waiting on the mailbox.

first_task

Pointer to a task pointer. The pointer of the first
suspended task is place in the task pointer.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_MAI LBOX

Indicates the mailbox pointer is invalid.

Chapter 6 - Mailboxes

Example
NU_MAI LBOX Mai | box;
CHAR mai | box_nane[8] ;
OPTI ON suspend_t ype;
DATA_ELEMENT nessage_present;
UNSI GNED t asks_suspended;
NU_TASK *first_task;

STATUS st at us

/* Obtain informati on about the mail box control bl ock “Mail box”.
Assume “Mai | box” has previously been created with the Nucl eus
PLUS NU Create_Mil box service call. */

status = NU Mail box_I nformati on(&Wail box, mail box_nane,

&suspend_t ype, &nessage_present,
& asks_suspended, &first_task);

/* |f status is NU SUCCESS, the other information is accurate. */

See Also

NU_Creat e_Mai | box, NU Del et e_Mai |l box, NU_Established_Mi |l boxes,
NU_Mai | box_Poi nters

85

Nucleus PLUS Reference Manual

NU Mai | box _Poi nters

UNSI GNED NU_Mai | box_Poi nt er s(NU_MAI LBOX **poi nter _|ist,
UNSI GNED mexi mum _poi nt ers)

This service builds a sequential list of pointers to all established mailboxes in the system.

& NOTE: Mailboxes that have been deleted are no longer considered established.
The parameter poi nter_|ist points to the location used for building the list of
pointers, while maxi mum poi nt er s indicates the maximum size of the list. This
service returns the actual number of pointers in the list. Additionally, the list is
ordered from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pointer _list Pointer to an array of NU_MAI LBOX pointers. This array will
be filled with pointers of established mailboxes in the
system.
maxi num_poi nt ers The maximum number of NU_MAI LBOX pointers to place into
the array. Typically, this will be the size of the
poi nter _|ist array.

Return Value

This service call returns the number of created mailboxes in the system.

86

Chapter 6 - Mailboxes

Example
/* Define an array capabl e of hol ding 20 mail box pointers */

NU_MAI LBOX *Poi nter _Array[20] ;
UNSI GNED nunber ;

/* btain a list of currently active nail box
poi nters (Maxi mum of 20). */
nunmber = NU_Mai | box_Poi nt er s(&Poi nter _Array[0], 20);

/* At this point, the nunber contains the actual nunber of
pointers in the list. */

See Also

NU_Creat e_Mai | box, NU Del et e_Mai |l box, NU_Established_Mi |l boxes,
NU_Mai | box_I nf or mati on

87

Nucleus PLUS Reference Manual

NU Recei ve_From Mai | box

STATUS NU_Recei ve_From Mai | box(NU_MAI LBOX * i | box,

VO D *nessage,
UNSI GNED suspend)

This service retrieves a message from the specified mailbox. If the mailbox contains a
message, it is immediately removed from the mailbox and copied into the designated
location. Mailbox messages are equivalent in size to four UNSI GNED data elements.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
mai | box Pointer to the user-supplied mailbox control block.
message Pointer to the message destination. NOTE: message
destination must be at least the size of four UNSI GNED data
elements.
suspend Specifies whether to suspend the calling task if the mailbox is
empty.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not
the request can be satisfied. NOTE: this is the only valid
option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until a message is available.

ti meout val ue

(1 - 4,294,967, 293). The calling task is suspended until a
message is available or until the specified number of ticks has
expired.

88

Return Value

Chapter 6 - Mailboxes

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_MAI LBOX

Indicates the mailbox pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_MAI LBOX_EMPTY

Indicates the mailbox is empty.

NU_TI MEOUT

Indicates that the mailbox is still empty even after
suspending for the specified timeout value.

NU_MAI LBOX_DELETED

Mailbox was deleted while the task was suspended.

NU_MAI LBOX_RESET

Mailbox was reset while the task was suspended.

Example
NU_MAI LBOX i | box;
UNSI GNED nessage| 4] ;

STATUS st at us;

/* Receive a message fromthe mail box control block “Mil box”.
If the mailbox is enpty, suspend for 20 timer ticks. Note:
the order of nultiple tasks suspending on the sane nail box
is deternined when the mailbox is created. Assume “Mail box”
has previously been created with the Nucl eus PLUS
NU_Cr eat e_Mai | box service call. */

status = NU Receive_From Mi |l box(&Wai | box, &ressage[0], 20) ;

/* At this point, status indicates whether the service request
was successful. |If successful, “message” contains the
recei ved mai |l box nmessage. */

See Also

NU_Broadcast _To_Mai |l box, NU _Send_To_Mai | box, NU Mail box_I nfornation

&9

Nucleus PLUS Reference Manual

NU Reset Mai | box
STATUS NU_Reset _Mai | box(NU_MAI LBOX *mai | box)

This service discards a message currently in the mailbox specified by mai | box. All tasks
suspended on the mailbox are resumed with the appropriate reset status.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
mai | box Pointer to the user-supplied mailbox control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_NAI LBOX | Indicates the mailbox pointer is invalid.
Example
NU_MAI LBOX Mai | box;

STATUS st at us;

/* Reset the nuil box control block “Milbox”.
Assune “Mi |l box” has previously been created with
the Nucl eus PLUS NU Create_Muil box service call. */
status = NU_Reset_Mai |l box(&MWai | box) ;

See Also

NU_Br oadcast _To_Mai | box, NU_Send_To_Mai | box,
NU_Recei ve_From Mai | box, NU_Mai | box_I nformation

90

Chapter 6 - Mailboxes

NU Send To_ Mai | box

STATUS NU_Send_To_Mai | box(NU_MAI LBOX *nai | box,
VO D *nessage,
UNSI GNED suspend)

This service places a message into the specified mailbox. If the mailbox is empty, the
message is copied immediately into the mailbox. Mailbox messages are equivalent to four
UNSI GNED data elements in size. The parameters of this service are further defined as
follows:

Overview
Option
Taski ng Changes | Yes
Al l owed From Application_Initialize, HISR, Signal Handler, task
Cat egory Task Communication Services
Parameters
Parameter Meaning
mai | box Pointer to the mailbox.
message Pointer to the message to send.
suspend Specifies whether to suspend the calling task if the
mailbox already contains a message.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option | Meaning

NU_NO_SUSPEND The service returns immediately regardless of whether or
not the request can be satisfied. Note: this is the only valid
option if the service is called from a non-task thread.
NU_SUSPEND The calling task is suspended until the message can be
sent.

timeout value (1 — 4,294,967, 293). The calling task is suspended
until the message can be sent or until the specified number
of ticks has expired.

91

N

ucleus PLUS Reference Manual

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_NMAI LBOX Indicates the mailbox pointer is invalid.

NU_I NVALI D_PQO NTER | Indicates the message pointer is NULL.

NU_I NVALI D_SUSPEND Indicates that suspend attempted from a non-task thread.

NU_MAI LBOX_FULL Indicates the mailbox is full.

NU_TI MEQUT Indicates that the mailbox is still full even after suspending
for the specified timeout value.

NU_MAI LBOX_DELETED Mailbox was deleted while the task was suspended.

NU_MAI LBOX_RESET Mailbox was reset while the task was suspended.
Example
NU_MAI LBOX Mai | box;
UNSI GNED nessage[4] ;

STATUS st at us;

/* Build a 4 UNSI GNED-vari abl e nessage to send.
The contents of “message” have no significance. */

nmessage[0] = 0x00001111;
nmessage[1] = 0x00002222;
message[2] = 0x00003333;
message[3] = 0x00004444;

/* Send the nessage to the nmil box control bl ock
“Mai | box”. Suspend the calling task until the
message can be sent or until 25 timer ticks expire.
Assume “Mail box” has previously been created with
the Nucl eus PLUS NU Create_Muil box service call. */
status = NU_Send_To_Mai | box(&Vai | box, &mressage[0], 25);

/* At this point, status indicates whether the service
request was successful. |f successful, “nessage” was
sent to “Mil box”. */

See Also

92

NU_Br oadcast _To_Mai | box, NU_Recei ve_From Mai | box,
NU_Mai | box_I nfornati on

Chapter 6 - Mailboxes

Example Source Code

The following example will demonstrate the use of Nucleus PLUS mailboxes to
communicate between tasks.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

Create structures for three tasks (NU_TASK), and the memory pool (NU_MEMORY_POOL)
out of which all memory will be allocated for task stacks. Also create a mailbox structure
(NU_MAI LBOX) . This mailbox will be used to communicate between the three tasks in
the system.

NU_TASK task_recv_1;

NU_TASK task_recv_2;

NU_TASK t ask_send;

NU_MAI LBOX nmi | box_conmm

NU_MEMORY_POOL dm nenory;

Three void pointers will be used in this example. Each void pointer will hold a pointer to
a separate task stack. Although not demonstrated in this program, these pointers could be
used at a later time in the program to deallocate the task stacks, or they could be
discarded if the task stacks will never be deallocated.

VO D *stack_recv_1;

VO D *stack_recv_2;
VO D *st ack_send;

Declare the task entry point function for each of the three tasks. These will later be
passed as a parameter to the NU_Cr eat e_Task call which will associate these functions
with each of their respective tasks.

void entry_recv_1(UNSI GNED argc, VO D *argv);

void entry_recv_2(UNSI GNED argc, VO D *argv);
void entry_send(UNSI GNED argc, VO D *argv);

Application_Initialize will be used to create the dynamic memory pool, out of
which memory will be allocated for the three tasks in the system.
Application_lnitialize will also be used to create the mailbox which will be used
to communicate between the three tasks in the system.

voi d Application_lnitialize(VOD *first_avail abl e_nenory)

Create the dynamic memory pool, and associate it with the dm nenory control block.
The memory pool will be 43008 bytes large, will start at first_avai |l abl e_nenory,
and, if memory is unavailable, tasks that choose to suspend will be resumed in Fi r st -
I n-First-Qut order. The minimum allocation from this pool will be 128 bytes. For
more information on the NU_Cr eat e_Menory_Pool call, or dynamic memory pools in
general, see Chapter 4.

93

Nucleus PLUS Reference Manual

94

NU_Creat e_Menory_Pool (&Im nenory, "sysneni, first_avail abl e_nenory,
43008, 128, NU_FIFO;

For each task in the system, allocate 1024 bytes of memory for their respective stacks.
With the NU_Al | ocat e_Menory call, we are allocating a 1024 byte block of memory
out of the dm nmenory dynani ¢ memory pool. A pointer to the newly allocated memory
is assigned to stack_recv_1, stack_recv_2, and stack send respectively. The
pointer to this memory allocation is passed to the NU_Cr eat e_Task call, which will use
this memory as the task stack.

For this demonstration, note that t ask_recv_1 and t ask_recv_2 are given a higher
priority (priority level of 7) than task send. By doing this, we are ensuring that
task_recv_1 and t ask_recv_2 will always run before t ask_send. The t ask_send
will only run when both t ask_recv_1 and t ask_r ecv_2 are suspended.

NU_Al | ocat e_Menory(&Im nenory, &stack_recv_1, 1024, NU_NO_SUSPEND) ;

NU _Create_Task(& ask_recv_1, "recv_1", entry recv_1, 0, NU NULL,
stack_recv_1, 1024, 7, 0, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_recv_2, 1024, NU_NO_SUSPEND) ;
NU_Creat e_Task(&t ask_recv_2, "recv_2", entry recv_2, 0, NU NULL,
stack_recv_2, 1024, 7, 0, NU PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_send, 1024, NU_NO_SUSPEND) ;
NU_Creat e_Task(&t ask_send, "send", entry_send, 0, NU NULL,
stack_send, 1024, 8, 0, NU PREEMPT, NU_START);

Use NU_Cr eat e_Mai | box to create the mai | box_conmmailbox. This mailbox will be
named “comm”, and tasks that choose to suspend on this mailbox will be resumed in
First-In-First-Out order. Instead of specifying NU_FI FO, NU_PRI ORI TY could be
specified instead, which would cause tasks to be resumed based upon their priority. For
this example, the only tasks that will be suspending on this mailbox are of the same
priority, so the results will be the same regardless of the suspension type specified.

NU_Cr eat e_Mi | box(&mai | box_comm "commi', NU_FI FO;
}

The entry_recv_1 and entry_recv_2 functions serve as the entry point for the
task_recv_1 and t ask_recv_2 tasks respectively. The tasks will continuously loop,
issuing NU Recei ve_From Mail box for each iteration of the loop.
NU_Recei ve_From Mai | box will suspend until there is a message placed into the
mailbox (as indicated by NU_SUSPEND). Whenever a message 1is received,
NU_Recei ve_From Mai | box will exit with a return value of NU_SUCCESS. After the
call has returned, recvmsg will contain the message received. Therefore, there are two
tasks that are continuously suspending on the same mailbox, both waiting for a message
to be placed into the mailbox.

The PLUS scheduler will resume these tasks based on the suspend_t ype flag that was
specified when the mai | box_commmessage box was created.

Chapter 6 - Mailboxes

void entry_recv_1(UNSI GNED argc, VA D *argv)

{
UNSI GNED r ecvnsg| 4] ;

whi | e(1)

if (NU_Recei ve_From Mai | box(&mai | box_comm recvnsg, NU_SUSPEND)
== NU_SUCCESS)
/* recvnsg contains the received nessage. */

}

el se

{
/* an error has occurred. */

}

. }
void entry_recv_2(UNSI GNED argc, VA D *argv)

{
UNSI GNED r ecvnsg| 4] ;

whi | e(1)

if (NU_Recei ve_From Mai | box(&mai | box_comm recvnsg, NU_SUSPEND)
== NU_SUCCESS)
/* recvnsg contains the received nessage. */

}

el se

{
/* an error has occurred. */

}

}
}
The function entry_send serves as the task entry point for the t ask_send task. Note
that the t ask_recv_1 and t ask_r ecv_2 tasks are of a higher priority, and will always
be given first chance to run. Because of this, whenever t ask_send sends a message with
the mai | box_conm message box, either task_recv_1 or task_recv_2 will be
immediately resumed.

The t ask_send task continuously loops, and for each iteration of the loop it makes calls
to two different PLUS services. The first service call is to NU_Send_To_Mai | box which
will send a single message with the mailbox comm mailbox. The second service call that
is issued is NU_Br oadcast _To_Mai | box, which will send the message to every task
that is currently suspended on this mailbox. Note that in this example, whenever this task
is running, there will always be two tasks (task_recv_1 and task_recv_2)
suspended on the mai | box_conm mailbox. The result is that the message that is sent
with NU_Send_To_Mai | box will only be received by one of the suspended tasks, while
the message sent with NU_Br oadcast _To_Mai | box will be received by both suspended
tasks.

95

Nucleus PLUS Reference Manual

96

voi d entry_send(UNSI GNED argc, VA D *argv)
{
UNSI GNED sendnsg| 4] ;

whi | e(1)
{

Place decimal 1 in the first element of the four-element array, then issue
NU_Send_To_Mai | box on the mail box_conm message box. Since two tasks will
always be suspended on this mailbox, and the mailbox was created with the NU_FI FO
suspension flag, the first task that suspended on the mailbox will always receive this
message.

sendmsg[0] =1;

i f (NU_Send_To_Mai | box(&mai | box_comm sendnmsg, NU_SUSPEND)
== NU_SUCCESS)

/* The message was successfully sent. */

}

el se

/* An error occurred, or the message coul d not be sent. */

}

Place a decimal 2 in the first element of the four-element array, then issue
NU_Br oadcast _To_Mai | box on the mai | box_commmessage box. Because the priority
oftask_recv_1 and t ask_r ecv_2 is higher than this task, we are guaranteed that two
tasks will always be suspended on this mailbox. Therefore, the result of the
NU_Br oadcast _To_Mai | box service is that both tasks will be sent the message.
sendnsg[0] =2;

i f (NU_Broadcast_To_Mai | box(&ai | box_comm sendnsg, NU_SUSPEND)
== NU_SUCCESS)

/* The message was successfully sent. */
}

el se

/* An error occurred, or the message coul d not be sent. */

}
}
}

Quevues

Introduction
Function Reference

Example Source Code

97

Nucleus PLUS Reference Manual

Introduction

Queues provide a mechanism to transmit multiple messages. Messages are sent and
received by value. A send-message request copies the message into the queue, while a
receive-message request copies the message out of the queue. Messages may be placed at
the front of the queue or at the back of the queue.

Message Size

A queue message consists of one or more 32-bit words. Both fixed and variable-length
messages are supported. The type of message format is defined when the queue is created.
Variable-length message queues require an additional 32-bit word of overhead for each
message in the queue. Additionally, receive message requests on variable-length message
queues specify the maximum message size, while the same requests on fixed-length
message queues specify the exact message size.

Suspension

Send and receive queue services provide options for unconditional suspension, suspension
with a timeout, and no suspension.

Tasks may suspend on a queue for several reasons. A task attempting to receive a message
from an empty queue can suspend. Additionally, a task attempting to send a message to a
full queue can suspend. A suspended task is resumed when the queue is able to satisfy that
task’s request. For example, suppose a task is suspended on a queue waiting to receive a
message. When a message is sent to the queue, the suspended task is resumed.

Multiple tasks may suspend on a single queue. Tasks are suspended in either FIFO or
priority order, depending on how the queue was created. If the queue supports FIFO
suspension, tasks are resumed in the order in which they were suspended. Otherwise, if the
queue supports priority suspension, tasks are resumed from high priority to low priority.

Broadcast
A queue message may be broadcast. This service is similar to a send request, except that
all tasks waiting for a message from the queue are given the broadcast message.

Dynamic Creation

Nucleus PLUS queues are created and deleted dynamically. There is no preset limit on the
number of queues an application may have. Each queue requires a control block and a
queue data area. The memory for each is supplied by the application.

98

Chapter 7 - Queues

Determinism

Basic processing time required for sending and receiving queue messages is constant.
However, the time required to copy a message is relative to the size of the message.
Additionally, processing time required to suspend a task in priority order is affected by the
number of tasks currently suspended on the queue.

Quevue Information

Application tasks may obtain a list of active queues. Detailed information about each
queue can also be obtained. This information includes the queue name, message format,
suspension type, number of messages present, and the first task waiting.

Function Reference

The following function reference contains all functions related to Nucleus PLUS queues.
The following functions are contained in this reference:

NU_Br oadcast _To_Queue
NU_Cr eat e_Queue

NU_Del et e_Queue

NU_Est abl i shed_Queues
NU_Queue_I nfornati on
NU_Queue_Poi nters

NU_Recei ve_From Queue
NU_Reset _Queue
NU_Send_To_Front _Of _Queue
NU_Send_To_Queue

99

Nucleus PLUS Reference Manual

NU Broadcast To Queue

STATUS NU_Br oadcast _To_Queue(NU_QUEUE *queue, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

This service broadcasts a message to all tasks waiting for a message from the specified
queue. If no tasks are waiting, the message is simply placed at the end of the queue.
Queues are capable of holding multiple messages. Queue messages are comprised of a
fixed or variable number of UNSI GNED data elements, depending on how this queue was
created. The parameters of this service are further defined as follows:

Overview
Option
Tasking Changes Yes
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block.
nmessage Pointer to the broadcast message.
si ze Specifies the number of UNSI GNED data elements in the

message. If the queue supports variable-length messages, this
parameter must be equal to or less than the message size
supported by the queue. If the queue supports fixed-size
messages, this parameter must be exactly the same as the
message size supported by the queue.

suspend Specifies whether to suspend the calling task if there is
insufficient room in the queue to hold the message.

Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option Meaning

NU_NO_SUSPEND The service returns immediately regardless of whether or not
the request can be satisfied. NOTE: This is the only valid
option if the service is called from a non-task thread.

NU_SUSPEND The calling task is suspended until the message can be copied
into the queue.
timeout val ue (1 -4,294,967,293). The calling task is suspended until the

message can be copied into the queue or until the specified
number of ticks has expired.

100

Return Value

Chapter 7 - Queues

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_QUEUE

Indicates the queue pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL.

NU_I N\VALI D_SI ZE

Indicates that the message size specified is not compatible
with the size specified when the queue was created.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_QUEUE_FULL

Indicates the message could not be immediately placed in
the queue because there was not enough space available.

NU_TI MEOUT

Indicates that the queue is unable to accept the message even
after suspending for the specified timeout value.

NU_QUEUE_DELETED

Queue was deleted while the task was suspended.

NU_QUEUE_RESET

Queue was reset while the task was suspended.

Example
NU_QUEUE Queue;
UNSI GNED messagel[4] ;
STATUS st at us

/* Build a message to send to a queue. The contents of
“message” are not significant. */

nessage[0] = 0x00001111;
message[1] = 0x22223333;
message[3] = 0x44445555;
nessage[4] = 0x66667777;

/* Send the message to the queue control block “Queue”.

If the queue is full,

suspend until the request can

be satisfied. Assune “Queue” has previously been
created with the Nucl eus PLUS NU Creat e_Queue

service call.*/

status = NU Broadcast_To_Queue(&Queue, &mressage[O0], 4,

NU_SUSPEND) ;
/* At this point, status indicates whether the service
request was successful. */
See Also

NU_Send_To_Queue, NU Send_To_Front O Queue, NU _Recei ve_From Queue,

NU_Queue_I nformati on

101

Nucleus PLUS Reference Manual

NU Create Queue

STATUS NU_Creat e_Queue(NU_QUEUE *queue, char *nane,

VO D *start_address,
UNSI GNED queue_si ze,
OPTI ON nessage_t ype,
UNSI GNED nessage_si ze,
OPTI ON suspend_t ype)

This service creates a message queue. Queues are created to support management of either
fixed or variable sized messages. Queue messages are comprised of one or more
UNSI GNED data elements. The parameters of this service are further defined as follows:

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block. NOTE:
Subsequent requests made to the queue require this pointer.
nane

Pointer to an 8-character name for the queue. The name does
not have to be null-terminated.

start_address

Specifies the starting address for the queue. NOTE: This
address must be properly aligned for UNSI GNED data access.

gueue_si ze

Specifies the number of UNSI GNED elements in the queue.

nmessage_t ype

Specifies the type of messages managed by the queue.
NU_FI XED_SI ZE specifies that the queue manages fixed-size
messages. NOTE: A fixed-size message queue only uses the
area of the queue that is evenly divisible by the message size.
NU_VARI ABLE_SI ZE indicates that the queue manages
variable-size messages. NOTE: Each variable-size message
requires an additional UNSI GNED data element of overhead
inside the queue.

nessage_si ze

If the queue supports fixed-size messages, this parameter
specifies the exact size of each message. Otherwise, if the
queue supports variable-size messages, this parameter indicates
the maximum message size. All sizes are in terms of
UNSI GNED data elements.

suspend_t ype

Specifies how tasks suspend on the queue. Valid options for
this parameter are NU FIFO and NU PRI ORI TY, which
represent First-In-First-Out (FI FO) and priority-order task
suspension, respectively.

102

Chapter 7 - Queues

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_QUEUE Indicates the queue control block pointer is NULL or is
already in use.

NU_I NVALI D_MEMORY Indicates the memory area specified by the

start _address isinvalid.

NU_I NVALI D_MESSAGE Indicates that the message_type parameter is invalid.
NU_I NVALI D_SI ZE Indicates that either the message size is greater than the
queue size, or that the queue size or message size is zero.
NU_I NVALI D_SUSPEND | Indicates the suspend_t ype parameter is invalid.

Example

/* Assume queue control block “Queue” is defined as
a global data structure. This is one of several
ways to allocate a control block. */

NU_QUEUE Queue;

/* Assume status is defined locally. */

STATUS st at us; /* Queue creation status */

/* Create a queue with a capacity of 1000 UNSI GNED
el ements starting at the address pointed to by the
variable “start.” Variable-length nessages are
supported, with a maxi mum nmessage size of 20. Tasks

suspend on this queue in FIFO order. */

status = NU Create_Queue(&Queue, “any nane”, start, 1000,
NU_VARI ABLE_SI ZE, 20, NU_FIFO;

/* At this point status indicates if the service was successful. */

See Also

NU_Del et e_Queue, NU Est abl i shed_Queues, NU Queue_Pointers,
NU_Queue_l nformati on, NU_Reset Queue

103

Nucleus PLUS Reference Manual

NU Del et e_Queue

STATUS NU_Del et e_Queue(NU_QUEUE *queue)

This service deletes a previously created message queue. The parameter Queue
identifies the message queue to delete. Tasks suspended on this queue are resumed with
the appropriate error status. The application must prevent the use of this queue during and
after deletion.

Overview
Option
Tasking Changes Yes
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_QUEUE | Indicates the queue pointer is invalid.
Example
NU_QUEUE Queue;
STATUS st at us

/* Delete the queue control block “Queue”. Assune “Queue”
has previously been created with the Nucl eus PLUS
NU Create_Queue service call. */

status = NU_Del et e_Queue(&ueue) ;

/* At this point, status indicates whether the service
request was successful. */

See Also

NU_Creat e_Queue, NU_Established_Queues, NU Queue_Pointers,
NU_Queue_I nformation, NU Reset_Queue

104

Chapter 7 - Queues

NU Est abl i shed Queues

UNSI GNED NU_Est abl i shed_Queues(VA D)

This service returns the number of established queues. All created queues are considered
established. Deleted queues are no longer considered established.

Overview

Option
Tasking Changes No

Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services

Parameters

None

Return Value

This service call returns the number of created queues in the system

Example
UNSI GNED t ot al _queues;

/* Cbtain the number of queues. */
tot al _queues = NU_Est abl i shed_Queues();

See Also

NU_Creat e_Queue, NU Del ete_Queue, NU Queue_Pointers,
NU_Queue_I nformati on, NU_Reset Queue

105

Nucleus PLUS Reference Manual

NU Queue_ | nformati on

STATUS NU_Queue_I nformati on(NU_QUEUE *queue, CHAR *nane,
VO D **start _address,
UNSI GNED *queue_si ze,
UNSI GNED *avai | abl e,
UNSI GNED *nessages,
OPTI ON *nessage_t ype,
UNSI GNED *nessage_si ze,
OPTI ON *suspend_t ype,
UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

This service returns various information about the specified message-communication
queue.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services

106

Chapter 7 - Queues

Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block.
nane

Pointer to an 8-character destination area for the message-
queue’s name.

start _address

Pointer to a memory pointer for holding the starting address of
the queue.

queue_si ze

Pointer to a variable for holding the total number of
UNSI GNED data elements in the queue.

avail abl e Pointer to a variable for holding the number of available
UNSI GNED data elements in the queue.
messages Pointer to a variable for holding the number of messages

currently in the queue.

message_t ype

Pointer to a variable for holding the type of messages
supported by the queue. Valid message types are
NU_FI XED_SI ZE and NU_VARI ABLE_SI ZE.

nessage_si ze

Pointer to a variable for holding the number of UNSI GNED
data elements in each queue message. If the queue supports
variable-length messages, this number is the maximum
message size.

suspend_t ype

Pointer to a variable for holding the task suspend type. Valid
task suspend types are NU_FI FO and NU PRI ORI TY.

tasks_waiting

Pointer to a variable for holding the number of tasks waiting on
the queue.

first_task

Pointer to a task pointer. The pointer of the first suspended
task is placed in this task pointer.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_QUEUE

Indicates the queue pointer is invalid.

107

Nucleus PLUS Reference Manual

Example

NU_QUEUE Queue;

CHAR queue_nane[8] ;

VA D *start_address;

UNSI GNED si ze;

UNSI GNED avai | abl e;

UNSI GNED messages;

OPTI ON message_t ype;

UNSI GNED message_si ze;

OPTI ON suspend_t ype;

UNSI GNED t asks_suspended;

NU_TASK *first_task;

STATUS st at us;

/* obtain informati on about the nessage queue control
bl ock “Queue”. Assume “Queue” has previously been
created with the Nucl eus PLUS NU Creat e_Queue service
call. */

status = NU Queue_| nformati on(&Queue, queue_nane, &start_address,
&si ze, &avail able, &ressages,
&ressage_t ype, &nessage_si ze,
&suspend_t ype, &tasks_suspended,
& irst_task);

/* If status is NU SUCCESS, the other information is accurate. */

See Also

NU_Creat e_Queue, NU Del ete_Queue, NU_Established_Queues,
NU_Queue_Poi nters, NU Reset_ Queue

108

Chapter 7 - Queues

NU Queue Poi nters

UNSI GNED NU_Queue_Poi nt er s(NU_QUEUE **poi nter_li st,
UNSI GNED maxi mum _poi nt ers)

This service builds a sequential list of pointers to all established message queues in the
system.

& NOTE: Queues that have been deleted are no longer considered established. The
parameter poi nter_|i st points to the location for building the list of pointers,
while maxi mum poi nt er s indicates the maximum size of the list. This service
returns the actual number of pointers in the list. Additionally, the list is ordered

from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pointer_list Pointer to an array of NU_QUEUE pointers. This array will be
filled with pointers of established queues in the system.
Maxi mum poi nters The maximum number of NU_QUEUE pointers to place into
the array. Typically, this will be the size of the
poi nter_|ist array.

Return Value

This service call returns the number of created queues in the system.

Example
/* Define an array capabl e of hol ding 20 queue pointers. */
NU_QUEUE *Poi nter _Array[20] ;
UNSI GNED nunber ;

/* Cpbtain a list of currently active queue pointers
(Maxi mum of 20). */
nurmber = NU_Queue_Poi nt er s(&Poi nter _Array[0], 20) ;

/* At this point, nunber contains the actual nunber
of pointers in the list. */

See Also

NU_Creat e_Queue, NU Del ete_Queue, NU_Established_Queues,
NU_Queue_l nformati on, NU_Reset Queue

109

Nucleus PLUS Reference Manual

NU Recei ve_From Queue

STATUS NU_Recei ve_From Queue(NU_QUEUE *queue, VO D *nessage,

This service retrieves a message from the specified queue. If the queue contains one or
more messages, the message in front is immediately removed from the queue and copied
into the designated location. Queue messages are comprised of a fixed or variable number

UNSI GNED si ze, UNSI GNED *act ual _si ze,
UNSI GNED suspend)

of UNSI GNED data elements, depending on the type of messages supported by the queue.

Overview
Option
Tasking Changes | Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block.
nessage Pointer to the message destination. NOTE: The message
destination must be capable of holding “si ze” UNSI GNED data
elements.
si ze Specifies the number of UNSI GNED data elements in the message.
This number must correspond to the message size defined when the
queue was created
actual _size Pointer to a variable to hold the actual number of UNSI GNED data
elements in the received message.
suspend Specifies whether to suspend the calling task if the queue is empty.

110

Suspension

Chapter 7 - Queues

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or
not the request can be satisfied. NOTE: This is the only
valid option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until a message is available.

ti meout val ue

(1 - 4,294, 967, 293). The calling task is suspended
until a message is available or until the specified number of
ticks has expired.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_QUEUE

Indicates the queue pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message destination pointer is NULL or the
“act ual _si ze” pointer is NULL.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_QUEUE_EMPTY

Indicates the queue is empty.

NU_I| NVALI D_SI ZE

Indicates the si ze parameter is different from the
message size supported by the queue. Applies only to
queues defined with fixed message size.

NU_TI MEQUT

Indicates that the queue is still empty even after suspending
for the specified timeout value.

NU_QUEUE_DELETED

Queue was deleted while the task was suspended.

NU_QUEUE_RESET

Queue was reset while the task was suspended.

111

Nucleus PLUS Reference Manual

Example
NU_QUEUE Queue;
UNSI GNED messagel[4] ;
UNSI GNED act ual _si ze;
STATUS st at us;

/* Receive a 4-UNSI GNED data el enent nessage fromthe
queue control block “Queue”. |f the queue is enpty,
suspend until the request can be satisfied. Assune
“Queue” has previously been created with the Nucl eus
PLUS NU Create_Queue service call. */

status = NU Receive_From Queue(&Queue, &mressage[O0], 4,

&act ual _si ze, NU_SUSPEND) ;

/* At this point, status indicates whether the service
request was successful. |f successful, “nessage”
contains the received nmessage. */

See Also

NU_Br oadcast _To_Queue, NU_Send_To_Queue, NU _Send_To_Front O _Queue,
NU_Queue_I nformati on

112

Chapter 7 - Queues

NU Reset Queue
STATUS NU_Reset _Queue(NU_QUEUE *queue)

This service discards all messages currently in the queue specified by queue.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_QUEUE | Indicates the queue pointer is invalid.
Example
NU_QUEUE Queue;
STATUS st at us

/* Reset the queue control block “Queue”. Assune “Queue”
has previously been created with the Nucl eus PLUS
NU Create_Queue service call. */

status = NU Reset_Queue(&Qeue);

See Also

NU_Br oadcast _To_Queue, NU_Send_To_Queue, NU _Send_To_Front O _Queue,
NU_Recei ve_From Queue, NU_Queue_I nfornmation

113

Nucleus PLUS Reference Manual

NU Send To Front O Queue

STATUS NU_Send_To_Front _O _Queue(NU_QUEUE *queue,

This service places a message at the front of the specified queue. If there is enough space
in the queue to hold the message, this service is processed immediately. Queue messages
are comprised of a fixed or variable number of UNSI GNED data elements, depending on

VO D *nessage,
UNSI GNED si ze,
UNSI GNED suspend)

the types of messages supported by the queue.

Overview
Option
Tasking Changes Yes
Allowed From Application_|lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block.
nessage Pointer to the message to send.
si ze Specifies the number of UNSI GNED data elements in the
message. If the queue supports variable-length messages, this
parameter must be equal to or less than the same as the
message size supported by the queue.
suspend Specifies whether to suspend the calling task if the queue is
full.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not
the request can be satisfied. NOTE: This is the only valid
option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until the message can be sent.

ti meout val ue

(1 -4,294,967,293). The calling task is suspended until the
message can be sent or until the specified number of ticks has
expired.

114

Return Value

Chapter 7 - Queues

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_QUEUE

Indicates the queue pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL.

NU_I N\VALI D_SI ZE

Indicates the specified message size is incompatible with
the message size supported by the queue.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_QUEUE_FULL

Indicates the queue is full.

NU_TI MEOUT

Indicates that the queue is still full even after suspending
for the specified timeout value.

NU_QUEUE_DELETED

Queue was deleted while the task was suspended.

NU_QUEUE_RESET

Queue was reset while the task was suspended.

Example
NU_QUEUE Queue;
UNSI GNED nessage| 4] ;
STATUS st at us

/* Build a 4 UNSI GNED vari abl e message to send. The contents
of “message” have no significance. */

nessage[0] = 0x00001111;
nessage[1] = 0x00002222;
message[2] = 0x00003333;
message[3] = 0x00004444;

/* Send nessage to the queue control block “Queue”. Suspend

the calling task until

the message can be sent. Assume

“Queue” has previously been created with the Nucl eus PLUS
NU _Create_Queue service call. */
Status = NU Send_To_Front _O _Queue(&Queue, &mressage[0],

4, NU_SUSPEND) ;

/* At this point, status indicates whether the service
request was successful. |f successful, “nessage” was

sent to “Queue”. */

See Also

NU_Br oadcast _To_Queue,
NU_Queue_I nformati on

NU_Recei ve_From Queue, NU Send_To_Queue,

115

Nucleus PLUS Reference Manual

NU Send To_ Queue

STATUS NU_Send_To_Queue(NU_QUEUE *queue, VO D *nessage,

UNSI GNED si ze, UNSI GNED suspend)

This service places a message at the back of the specified queue. If there is enough space
in the queue to hold the message, this service is processed immediately. Queue messages
are comprised of a fixed or variable-number of UNSI GNED data elements, depending on
the type of messages supported by the queue.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
queue Pointer to the user-supplied queue control block.
nessage Pointer to the message to send.
si ze Specifies the number of UNSI GNED data elements in the
message. If the queue supports variable-length messages, this
parameter must be equal to or less than the message size
supported by the queue. If the queue supports fixed-size
messages, this parameter must be exactly the same as the
message size supported by the queue.
suspend Specifies whether to suspend the calling task if the queue is
full.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not
the request can be satisfied. NOTE: This is the only valid
option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until the message can be sent.

ti meout val ue

(1 —-4,294,967,293). The calling task is suspended until the
message can be sent or until the specified number of ticks has
expired.

116

Return Value

Chapter 7 - Queues

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_QUEUE

Indicates the queue pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL.

NU_I N\VALI D_SI ZE

Indicates the message size is incompatible with the message
size supported by the queue.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_QUEUE_FULL

Indicates the queue is full.

NU_TI MEOUT

Indicates that the queue is still full even after suspending
for the specified timeout value.

NU_QUEUE_DELETED

Queue was deleted while the task was suspended.

NU_QUEUE_RESET

Queue was reset while the task was suspended.

Example
NU_QUEUE Queue;
UNSI GNED nessage| 4] ;

STATUS st at us;

/* Build a 4 UNSI GNED vari abl e nessage to send.
The contents of “message” have no significance. */

nessage[0] = 0x00001111;
nessage[1] = 0x00002222;
message[2] = 0x00003333;
message[3] = 0x00004444;

/* Send the nessage to the queue control block “Queue”.
Suspend the calling task until the nessage can be

sent. Assune “Queue”

has previously been created

with the Nucl eus PLUS NU Create Queue service call. */
status = NU Send_To_Queue(&Queue, &mressage[0], 4, NU_SUSPEND);

/* At this point, status indicates whether the service
request was successful. |f successful, “nessage”

was sent to “Queue”.

See Also

NU_Br oadcast _To_Queue,

*/

NU_Recei ve_From Queue,

NU_Send_To_Front _Of _Queue, NU Queue_Infornation

117

Nucleus PLUS Reference Manual

Example Source Code

In the previous chapter we looked at an example that demonstrated how to communicate
between tasks with mailboxes. In this section we will look at a very similar example, but
using queues to communicate between several tasks.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

Five Nucleus PLUS structures are used in this example. Three NU_TASK structures are
used, one for each task in the system. The NU_QUEUE structure is for the queue that will be
used to communicate messages between the three tasks in the system. An
NU_MEMORY_POQL structure is also used to allocate any memory, which in this example is
for the queue data area and a stack for each of the three tasks.

NU_TASK task_recv_1;

NU_TASK t ask_recv_2;

NU_TASK t ask_send;

NU_QUEUE queue_conm
NU_MEMORY_POOL dm nenory;

The three void pointers st ack_recv_1, stack_recv_2, and stack_send will each
hold a pointer to a separate task stack. Although not demonstrated in this program, these
pointers could be used at a later time in the program to deallocate the task stacks, or they
could be discarded if the task stacks will never be deallocated.

VO D *stack_recv_1;

VO D *stack_recv_2;
VA D *stack_send;

Similar to the above three void pointers, the dat a_queue pointer will be used to hold a
pointer to the data area for the queue. It can either be used to deallocate the associated
memory, or discarded if memory deallocation is not necessary.

VA D *dat a_queue;

Delcare the task entry point function for each of the three tasks. These will later be passed
as a parameter to the NU_Cr eat e_Task call which will associate these functions with
each of their respective tasks.

void entry_recv_1(UNSI GNED argc, VO D *argv);

void entry_recv_2(UNSIGNED argc, VA D *argv);
voi d entry_send(UNSI GNED argc, VO D *argv);

118

Chapter 7 - Queues

Application_Initialize will be used to create the dynamic memory pool, out of
which memory will be allocated for three task stacks, and the queue data area. Therefore,
in Application_Initialize there are four separate calls to NU_Al | ocat e_Menory.

Application_Initialize is also used to create the queue and associate the allocated
memory for its queue data area.

void Application_lnitialize(VOD *first_avail abl e_nmenory)

Create the dynamic memory pool and associate it with the dm_memory control block. The
memory pool will 43008 bytes large, will start at first_avail abl e_nenory, and, if
memory is unavailable, tasks that choose to suspend will resumed in First-In-First-Out
order. The minimum allocation from this pool will be 128 bytes. For more information on
the NU_Cr eat e_Menory_Pool call, or dynamic memory pools in general, see Chapter 4.

NU_Cr eat e_Menory_Pool (&Im nenory, "sysneni, first_avail abl e_nenory,
43008, 128, NU FI FO);

For each task in the system, allocate 1024 bytes of memory for their respective stacks.
With the NU_Al | ocat e_Menory call, we are allocating a 1024 byte block of memory out
of the dm nenory dynamic memory pool. A pointer to the newly allocated memory is
assigned to the st ack_recv_1, st ack_r ecv_2, and stack send respectively. The pointer
to this memory allocation is passed to the NU_Cr eat e_Task call, which will use this
memory as the task stack.

For this demonstration, note that t ask_recv_1 and task_recv_2 are given a higher
priority (priority level of 7) than task_send. By doing this, we are ensuring that
task_recv_1 and task_recv_2 will always run before t ask_send. The t ask_send
will only run when both t ask_recv_1 and t ask_r ecv_2 are suspended.

NU_Al | ocat e_Menory(&Im nenory, &stack_recv_1, 1024, NU_NO_SUSPEND) ;

NU Create_Task(& ask_recv_1, "recv_1", entry recv_1, 0, NU NULL,
stack_recv_1, 1024, 7, 0, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_recv_2, 1024, NU_NO_SUSPEND) ;
NU Create_Task(& ask_recv_2, "recv_2", entry_recv_2, 0, NU NULL,
stack_recv_2, 1024, 7, 0, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_send, 1024, NU_NO_SUSPEND) ;

NU Create_Task(& ask_send, "send", entry_send, 0, NU NULL,
stack_send, 1024, 8, 0, NU_PREEMPT, NU _START);

119

Nucleus PLUS Reference Manual

First, allocate memory for the queue data area with a call to NU_Al | ocat e_Menory. This
call allocates 32768 bytes out of the dm menory dynamic memory pool, and assigns a
pointer to this memory to the dat a_queue void pointer. Then call NU_Cr eat e_Queue to
associate this memory to the queue_commqueue. The queue_conmmqueue is a queue with
fixed sized messages (NU_FI XED_SI ZE), and each message will be 32-bits in size. The
queue is associated with the name “comm” and tasks that choose to suspend on this queue
will be resumed in First-In-First-Out order.

NU_Al | ocat e_Menory(&Im nmenory, &data_queue, 32768, NU_NO SUSPEND) ;

NU_Cr eat e_Queue(&ueue_conmm "conmi', data_queue, 32768,
NU_FI XED_SI ZE, 1, NU_FI FO);
}

The entry_recv_1 and entry_recv_2 functions serve as the entry point for the
task_recv_1 and task_recv_2 tasks respectively. The tasks will continuously loop,
issuing an NU_Recei ve_From Queue call for each iteration of the loop. The
NU_Recei ve_From Queue will suspend until there is a message placed into the queue (as
indicated by NU_SUSPEND). Whenever a message is received, NU_Recei ve_From Queue
will exit with a return value of NU_SUCCESS. After the call has returned, r ecvimsg will
contain the message received. Therefore, there are two tasks that are continuously
suspending on the same queue, both waiting for a message to be placed into the queue. The
PLUS scheduler will resume these tasks based on the suspend_t ype flag that was
specified when the queue_commqueue was created.

void entry_recv_1(UNSI GNED argc, VO D *argv)

{
UNSI GNED r ecvnsg;
UNSI GNED act ual _si ze;

whi | e(1)

i f (NU_Recei ve_From Queue(&ueue_comm &recvnsg, 1, &actual _si ze,
NU_SUSPEND) == NU_SUCCESS)

{
/* recvmsg contains the recei ved nessage. */
}

el se

{
/* an error has occurred. */

}

}

}

120

Chapter 7 - Queues

void entry_recv_2(UNSI GNED argc, VO D *argv)

{
UNSI GNED r ecvnsg;
UNSI GNED act ual _si ze;

whi | e(1)

i f (NU_Recei ve_From Queue(&ueue_conm &recvnsg, 1, &actual _si ze,
NU_SUSPEND) == NU_SUCCESS)

{
/* recvmsg contains the recei ved nessage. */
}
el se
/* an error has occurred. */
}

}

The function entry_send serves as the task entry point for the t ask_send task. Note that
the task_recv_1 and t ask_recv_2 tasks are of a higher priority, and will always be
given first chance to run. Because of this, whenever t ask_send sends a message with
queue_conmm either t ask_recv_1 ort ask_r ecv_2 will be immediately resumed.

The t ask_send task continuously loops, and for each iteration of the loop it makes calls
to two different PLUS services. The first service call is to NU_Send_To_Queue which will
send a single message with the queue_conmqueue. The second service call that is issued
is NU_Br oadcast _To_Queue, which will send the message to every task that is currently
suspended on this queue. Note that in this example, whenever this task is running, there
will always be two tasks (task_recv_1 and task_recv_2) suspended on the
queue_conmaqueue. The result is that the message that is sent with NU_Send_To_Queue
will only be received by one of the suspended tasks, while the message sent with
NU_Br oadcast _To_Queue will be received by both suspended tasks.

voi d entry_send(UNSI GNED argc, VO D *argv)
{
UNSI GNED sendnsg;

whi | e(1)
{

121

Nucleus PLUS Reference Manual

Assign decimal 1 to sendmsg, then issue NU_Send_To_Queue on the queue_commqueue.
Since two tasks will always be suspended on this queue, and the queue was created with
the NU_FI FO suspension flag, the first task that suspended on the queue will always
receive this message.

sendnsg=1;

i f (NU_Send_To_Queue(&queue_conm &sendnsg, 1, NU_SUSPEND)
== NU_SUCCESS)

{

/* recvmsg contains the recei ved nessage. */
}
el se

/* an error has occurred. */

}

Assign decimal 2 to sendmsg, then issue NU_Br oadcast _To_Queue on the queue_comm
queue. Because the priority of t ask_recv_1 and t ask_r ecv_2 is higher priority than
this task, we are guaranteed that two tasks will always be suspended on this queue.
Therefore, the result of the NU_Br oadcast _To_Queue service is that both tasks will be
sent the message.

sendnsg=2;

i f (NU_Broadcast _To_Queue(&ueue_conmm &sendnsg, 1,
NU_SUSPEND) == NU_SUCCESS)

{

}

el se

{

}

}

122

Introduction
Function Reference

Example Source Code

123

Nucleus PLUS Reference Manual

Introduction

Pipes provide a mechanism for transmitting multiple messages. Messages are sent and
received by value. A send-message request copies the message into the pipe, while a
receive-message request copies the message out of the pipe. Messages may be placed at
the front of the pipe or at the back of the pipe.

Message Size

A pipe message consists of one or more bytes. Both fixed and variable-length messages
are supported. The type of message format is defined when the pipe is created. Variable-
length message pipes require an additional 32-bit word of overhead for each message in
the pipe. Additionally, receive-message requests on variable-length message pipes specify
the maximum message size, while the same request on fixed-length message pipes specify
the exact message size.

Suspension

Send and receive pipe services provide options for unconditional suspension, suspension
with a timeout, and no suspension.

Tasks may suspend on a pipe for several reasons. Tasks attempting to receive a message
from an empty pipe can suspend. Also, a task attempting to send a message to a full pipe
can suspend. A suspended task is resumed when the pipe is able to satisfy that task’s
request. For example, suppose a task is suspended on a pipe waiting to receive a message.
When a message is sent to the pipe, the suspended task is resumed.

Multiple tasks may suspend on a single pipe. Tasks are suspended in either FIFO or
priority order, depending on how the pipe was created. If the pipe supports FIFO
suspension, tasks are resumed in the order in which they were suspended. Otherwise, if the
pipe supports priority suspension, tasks are resumed from high priority to low priority.

Broadcast
A pipe message may be broadcast. This service is similar to a send request, except that all
tasks waiting for a message from the pipe are given the broadcast message.

Dynamic Creation

Nucleus PLUS pipes are created and deleted dynamically. There is no preset limit on the
number of pipes an application may have. Each pipe requires a control block and a pipe
data area. The memory for each is supplied by the application.

124

Chapter 8 - Pipes

Determinism

Basic processing time required for sending and receiving pipe messages is constant.
However, the time required to copy a message is relative to the size of the message.
Additionally, processing time required to suspend a task in priority order is affected by the
number of tasks currently suspended on the pipe.

Pipe Information

Application tasks may obtain a list of active pipes. Detailed information about each pipe
can also be obtained. This information includes the pipe name, message format,
suspension type, number of messages present, and the first task waiting.

Function Reference

The following function reference contains all functions related to Nucleus PLUS pipes.
The following functions are contained in this reference:

NU_Br oadcast _To_Pi pe
NU_Cr eat e_Pi pe

NU_Del et e_Pi pe

NU_Est abl i shed_Pi pes
NU_Pi pe_I nformati on

NU_Pi pe_Poi nters

NU_Recei ve_From Pi pe
NU_Reset _Pi pe
NU_Send_To_Front _OF _Pi pe
NU_Send_To_Pi pe

125

Nucleus PLUS Reference Manual

NU_Br oadcast _To_Pi pe

STATUS NU_Br oadcast _To_Pi pe(NU_PI PE *pi pe, VO D *nessage,

UNSI GNED si ze, UNSI GNED suspend)

This service broadcasts a message to all tasks waiting for a message from the specified
pipe. If no tasks are waiting, the message is simply placed at the end of the pipe. Pipes
are capable of holding multiple messages. Pipe messages are comprised of a fixed or
variable number of bytes, depending on how the pipe was created.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the user-supplied pipe control block.
nessage Pointer to the broadcast message.
si ze Specifies the number of bytes in the message. If the pipe
supports variable-length messages, this parameter must be
equal to or less than the message size supported by the pipe.
If the pipe supports fixed-size messages, this parameter must
be exactly the same as the message size supported by the pipe.
suspend Specifies whether to suspend the calling task if there is
insufficient room in the pipe to hold the message.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not
the request can be satisfied. NOTE: This is the only valid
option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until the message can be copied
into the pipe.

ti meout val ue

(1 - 4,294,967, 293). The calling task is suspended until
the message can be copied into the pipe or until the specified
number of ticks has expired.

126

Return Value

Chapter 8 - Pipes

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_PI PE

Indicates the pipe pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL.

NU_I N\VALI D_SI ZE

Indicates that the message size specified is not compatible
with the size specified when the pipe was created.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_PI PE_FULL

Indicates the message could not be immediately placed in
the pipe because there was not enough space available.

NU_TI MEOUT

Indicates that the pipe is unable to accept the message even
after suspending for the specified timeout value.

NU_PI PE_DELETED

Pipe was deleted while the task was suspended.

NU_PI PE_RESET

Pipe was reset while the task was suspended.

Example

NU_PI PE Pi pe;

UNSI GNED_CHARnessage[4] ;

STATUS st at us

/* Build a 4-byte nmessage to send to a pipe. The
contents of “message” are not significant. */

nessage[0] = 0x01;
message[1] = 0x23;
message[2] = 0x45;
nessage[3] = O0x67;

/* Send a message to the pipe control block “Pipe”. Do not
suspend even if the pi pe does not have enough room for
the nmessage. Assune “Pipe” has previously been created
with the Nucl eus PLUS NU Create_Pipe service call. */

status = NU Broadcast_To_Pi pe(&Pi pe, &ressage[0], 4, NU_NO_SUSPEND);

/* At this point, status indicates whether the
servi ce request was successful. */

See Also

NU_Send_To_Pi pe, NU Send_To_Front _O _Pi pe, NU_Recei ve_From Pi pe,

NU_Pi pe_I nfornati on

127

Nucleus PLUS Reference Manual

NU _Create_ Pi pe

STATUS NU_Creat e_Pi pe(NU_PI PE *pi pe,

CHAR *nane,
VO D *start_address,

UNSI GNED pi pe_si ze,

OPTI ON nessage_t ype,

UNSI GNED nressage_si ze,
OPTI ON suspend_t ype)

This service creates a message pipe. Pipes are created to support management of either
fixed or variable sized messages.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the user-supplied pipe control block. NOTE:
Subsequent requests made to the pipe require this pointer.
nane

Pointer to an 8-character name for the pipe. The name does
not have to be null-terminated.

start_address

Specifies the starting address for the pipe.

pi pe_si ze

Specifies the total number of bytes in the pipe.

nmessage_t ype

Specifies the type of messages managed by the pipe.

NU_FI XED_SI ZE

Specifies that the pipe manages fixed-size messages. NOTE:
A fixed-size message pipe only uses the area of the pipe that
is evenly divisible by the message size.

NU_VARI ABLE_SI ZE

Indicates that the pipe manages variable-size messages.
NOTE: Each variable-size message requires an additional
UNSI GNED data type of overhead inside the pipe. Additional
padding bytes may be necessary for a message in order to
insure UNSI GNED alignment of the next variable-sized
message.

nessage_si ze

If the pipe supports fixed-size messages, this parameter
specifies the exact size of each message. Otherwise, if the
pipe supports variable-size messages, this parameter indicates
the maximum message size. All sizes are in terms of bytes.

suspend_t ype

Specifies how tasks suspend on the pipe. Valid options for
this parameter are NU_FI FO and NU_PRI ORI TY, which
represent First-In-First-Out (FI FO) and priority-order task
suspension, respectively.

128

Chapter 8 - Pipes

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I'NVALI D_PI PE Indicates the pipe control block pointer is NULL or is

already in use.

NU_I NVALI D_MEMORY | Indicates the memory area specified by the
start_address is invalid.

NU_I'NVALI D_MESSAGE | Indicates that the message_t ype parameter is invalid.
NU_I NVALI D_SI ZE Indicates that either the message size specified is larger
than the pipe size, or that the message size or pipe size is
Zero.

NU_I'NVALI D_SUSPEND | Indicates the suspend_t ype parameter is invalid.

Example
/* Assune pipe control block “Pipe” is defined as a gl obal

data structure. This is one of several ways to allocate
a control block. */

NU_PI PE Pi pe;

/* Assume status is defined locally. */

STATUS status; /* Pipe creation status */

/* Create a pipe in a 1500-byte nmenory area starting at
the address pointed to by the variable “start.”
Fi xed-si ze, 20-byte messages are supported by this
pi pe. Tasks suspend on this pipe in order of their
priority. */

status = NU Create_Pi pe(&Pi pe, “any name”, start, 1500,
NU_FI XED_SI ZE, 20, NU PRI ORI TY);

/* At this point status indicates if the service was successful. */

See Also

NU_Del et e_Pi pe, NU_Est abl i shed_Pi pes, NU_Pi pe_Poi nters,
NU_Pi pe_I nformati on, NU Reset Pi pe

129

Nucleus PLUS Reference Manual

NU Del et e_Pi pe
STATUS NU_Del et e_Pi pe(NU_PI PE *pi pe)

This service deletes a previously created message pipe. The parameter pi pe identifies
the message pipe to delete. Tasks suspended on this pipe are resumed with the appropriate
error status. The application must prevent the use of this pipe during and after deletion.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the user-supplied pipe control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_PI PE | Indicates the pipe pointer is invalid.
Example
NU_PI PE Pi pe;

STATUS st at us

/* Delete the pipe control block “Pipe”. Assune
“Pi pe” has previously been created with the Nucl eus
PLUS NU Create_Pi pe service call. */

status = NU_Del et e_Pi pe(&Pi pe) ;

/* At this point, status indicates whether the service
request was successful. */

See Also

NU_Creat e_Pi pe, NU_Established_Pi pes, NU_Pipe_Pointers,
NU_Pi pe_I nformati on, NU_Reset Pi pe

130

Chapter 8 - Pipes

NU_Est abl i shed_Pi pes
UNSI GNED NU_Est abl i shed_Pi pes(VA D)

This service returns the number of established pipes. All created pipes are considered
established. Deleted pipes are no longer considered established.

Overview

Option
Tasking Changes No

Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Communication Services

Parameters

None

Return Value

This service call returns the number of created pipes in the system

Example
UNSI GNED t ot al _pi pes;

/* Qobtain the total number of pipes. */
tot al _pi pes = NU_Est abl i shed_Pi pes();

See Also

NU_Creat e_Pi pe, NU Del ete_Pi pe, NU_Pipe_Pointers,
NU_Pi pe_I nformati on, NU Reset_Pi pe

131

Nucleus PLUS Reference Manual

NU_Pi pe_I nformation

STATUS NU_Pi pe_I nformati on(NU_PI PE *pi pe,

CHAR * nane,
VO D **start_address,

UNSI GNED * pi pe_si ze,

UNSI GNED *avai | abl e,

UNSI GNED *nessages,

OPTI ON *nessage_t ype,

UNSI GNED *nessage_si ze,
OPTI ON *suspend_t ype,

UNSI GNED *t asks_wai ti ng,
NU_TASK **fijrst_task)

This service returns various information about the specified message-communication pipe.

Overview
Option
Tasking Changes No
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the user-supplied pipe control block.
nane

Pointer to an 8-character destination area for the pipe’s
name.

start_address

Pointer for holding the starting address of the pipe.

pi pe_si ze Pointer for holding the total number of bytes in the pipe.
avail abl e Pointer for holding the number of available bytes in the pipe.
nmessages Pointer to a variable for holding the number of messages

currently in the pipe.

message_t ype

Pointer to a variable for holding the type of messages
supported by the pipe. Valid message types are
NU_FI XED_SI ZE and NU_VARI ABLE_SI ZE.

nmessage_si ze

Pointer to a variable for holding the number of bytes in each
message. If the pipe supports fixed-size messages, this is the
exact size of each message. If the pipe supports variable-
size messages, this is the maximum size of each message.

suspend_t ype

Pointer to a variable for holding the task suspend type. Valid
task suspend types are NU_FI FO and NU_PRI ORI TY.

tasks_waiting

Pointer to a variable for holding the number of tasks waiting
on the pipe.

first_task

Pointer to a task pointer. The pointer of the first suspended
task is placed in this task pointer.

132

Return Value

Chapter 8 - Pipes

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_PI PE Indicates the pipe pointer is invalid.
Example

NU_PI PE Pi pe;

CHAR pi pe_nane[8] ;

VA D *start_address;

UNSI GNED pi pe_si ze;

UNSI GNED avai | abl e;

UNSI GNED nmessages;

OPTI ON message_t ype;

UNSI GNED message_si ze;

OPTI ON suspend_t ype;

UNSI GNED t asks_suspended;

NU_TASK *first_task;

STATUS st at us

/* Obtain informati on about the nmessage pi pe control

bl ock “Pi pe”.

created w
call. */

status = NU_Pi pe_I nformati on(&Pi pe,

/* |If status

See Also

NU_Cr eat e_Pi pe,
NU_Pi pe_Poi nters,

Assune “Pi pe” has previously been
th the Nucl eus PLUS NU Create_Pipe service

pi pe_name, &start_address,
&avai | abl e, &messages,
&ressage_si ze,

&t asks_suspended,

&pi pe_si ze,
&nressage_t ype,
&suspend_t ype,
& irst_task);

information is accurate. */

i s NU_SUCCESS, the other

NU_Del et e_Pi pe,
NU_Reset _Pi pe

NU_Est abl i shed_Pi pes,

133

Nucleus PLUS Reference Manual

NU_Pi pe_Poi nters

UNSI GNED NU_Pi pe_Poi nters(NU_PI PE **poi nter_|i st,

UNSI GNED mexi mum _poi nt ers)

This service builds a sequential list of pointers to all established message pipes in the
system.

& NOTE: Pipes that have been deleted are no longer considered established. The
parameter poi nter_|i st points to the location for building the list of pointers,
while maxi mum poi nt er s indicates the maximum size of the list. This service
returns the actual number of pointers in the list. Additionally, the list is ordered

from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pointer _list Pointer to an array of NU_PI PE pointers. This array will be
filled with pointers of established pipes in the system.
Maxi mum_poi nters | The maximum number of NU_PI PE pointers to place into the
array. Typically, this will be the size of the poi nter _| i st
array.

Return Value

This service call returns the number of created pipes in the system.

Example
/* Define an array capabl e of hol ding 20 pi pe pointers. */
NU_PI PE *Poi nter _Array[20] ;
UNSI GNED nunber ;

/* Cpbtain a list of currently active pipe pointers
(Maxi mum of 20). */
number = NU_Pi pe_Poi nters(&Pointer_Array[0], 20);

/* At this point, nunber contains the actual nunber
of pointers in the list. */

See Also

NU_Creat e_Pi pe, NU Del ete_Pi pe, NU_Established_Pi pes,
NU_Pi pe_I nformati on, NU Reset_Pi pe

NU Recei ve_From Pi pe
134

Chapter 8 - Pipes

STATUS NU_Recei ve_From Pi pe(NU_PI PE *pi pe,

VO D *nmessage,

UNS| GNED si ze,

UNSI GNED *act ual _si ze,
UNSI GNED suspend)

This service retrieves a message from the specified pipe. If the pipe contains one or more
messages, the message in front is immediately removed from the pipe and copied into the
designated location. Pipe messages are comprised of a fixed or variable number of bytes,
depending on the type of the messages supported by the pipe.

Overview
Option
Tasking Changes Yes
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the pipe.
nmessage Pointer to message destination. NOTE: The message
destination must be large enough to hold si ze bytes.
si ze Specifies the number of bytes in the message. This
number must correspond to the message size defined when
the pipe was created.
actual _si ze Pointer to a variable to hold the actual number of bytes in
the received message.
suspend Specifies whether to suspend the calling task if the pipe is
empty.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or
not the request can be satisfied. NOTE: This is the only
valid option if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until a message is available.

tinmeout val ue

(1-4,294,967,293). The calling task is suspended until a
message is available or until the specified number of ticks
has expired.

135

Nucleus PLUS Reference Manual

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I N\VALI D_PI PE

Indicates the pipe pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL or the actual size
pointer is NULL.

NU | NVALI D_SI ZE

Indicates the si ze parameter is different from the
message size supported by the pipe. Applies only to pipes
defined with fixed message size.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_PI PE_EMPTY

Indicates the pipe is empty.

NU_TI MEQUT

Indicates that the pipe is still empty even after suspending
for the specified timeout value.

NU_PI PE_DELETED

Pipe was deleted while the task was suspended.

NU_PI PE_RESET

Pipe was reset while the task was suspended.

Example
NU_PI PE Pi pe;
UNSI GNED_CHARnessage[4] ;
UNSI GNED act ual _si ze;

STATUS st at us;

}* Receive a 4-byte, fixed size nessage fromthe pipe

control block “Pipe”.

Do not suspend even if the pipe

is enpty. Assune “Pipe” has previously been created
with the Nucl eus PLUS NU Create_Pipe service call. */
status = NU_Recei ve_From Pi pe(&Pi pe, &ressage[0], 4, &actual _si ze,

NU_NO_SUSPEND) ;

/* At this point, status indicates whether the service request
was successful. |If successful, “nessage” contains the nmessage
and “actual _size” contains 4.* /

See Also

NU_Br oadcast _To_Pi pe,
NU_Pi pe_I nformati on

136

NU_Send_To_Pi pe, NU Send_To_Front O _Pi pe,

Chapter 8 - Pipes

NU_Reset Pi pe
STATUS NU_Reset _Pi pe(NU_PI PE *pi pe)

This service discards all messages currently in the pipe specified by pi pe. All tasks
suspended on the pipe are resumed with the appropriate reset status.

Overview
Option
Tasking Changes Yes
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the user-supplied pipe control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_PI PE | Indicates the pipe pointer is invalid.
Example
NU_PI PE Pi pe;

STATUS st at us

/* Reset the pipe control block “Pipe”. Assume “Pipe” has
previously been created with the Nucl eus PLUS
NU Create_Pi pe service call. */

status = NU_Reset _Pi pe(&Pi pe);

See Also

NU_Br oadcast _To_Pi pe, NU_Send_To_Pi pe, NU_Send_To_Front O _Pi pe,
NU_Recei ve_From Pi pe, NU_Pi pe_I nfornation

137

Nucleus PLUS Reference Manual

NU Send_To_Front O _Pi pe

STATUS NU_Send_To_Front _O _Pi pe(NU_PI PE *pi pe, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

This service places a message at the front of the specified pipe. If there is enough space in
the pipe to hold the message, this service is processed immediately. Pipe messages are
comprised of a fixed or variable-number of bytes, depending on the type of messages
supported by the pipe.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the pipe.
nessage Pointer to the message to send.
si ze Specifies the number of bytes in the message. If the pipe
supports variable-length messages, this parameter must be
equal to or less than the message size supported by the pipe. If
the pipe supports fixed-size messages, this parameter must be
exactly the same as the message size supported by the pipe.
suspend Specifies whether to suspend the calling task if the pipe is full.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not
the request can be satisfied. Note: this is the only valid option
if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until the message can be sent.

ti meout val ue

(1 — 4,294,967,293). The calling task is suspended until the
message can sent or until the specified number of ticks has
expired.

138

Return Value

Chapter 8 - Pipes

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_PI PE

Indicates the pipe pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL.

NU_I N\VALI D_SI ZE

Indicates the message size is incompatible with the message
size supported by the pipe.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_PI PE_FULL

Indicates the pipe is full.

NU_TI MEOUT

Indicates that the pipe is still full even after suspending for
the specified timeout value.

NU_PI PE_DELETED

Pipe was deleted while the task was suspended.

NU_PI PE_RESET

Pipe was reset while the task was suspended.

Example
NU_PI PE Pi pe;

UNSI GNED_CHARnessage[4] ;

STATUS st at us;

/* Build a 4-byte nmessage to send. The contents of
“message” have no significance. */

nessage[0] = 0x01;
nessage[1] = 0x02;
message[2] = 0xO083;
message[3] = 0x04;

/* Send a 4-byte, fixed size nessage to the pipe control bl ock

“Pipe”. Do not suspend even if the pipe is full. Assume
“Pi pe” has previously been created with the Nucl eus PLUS
NU_Create_Pi pe service call. */

status = NU Send_To_Front _O _Pi pe(&Pi pe, &mressage[0],

4, NU_NO_SUSPEND) ;

/* At this point, status indicates whether the service request
was successful. If successful, “nmessage” was sent to “Pipe’. */

See Also

NU_Br oadcast _To_Pi pe,

NU_Pi pe_I nfornati on

NU_Recei ve_From Pi pe, NU_Send_To_Pi pe,

139

Nucleus PLUS Reference Manual

NU _Send_To_Pi pe

STATUS NU_Send_To_Pi pe(NU_PI PE *pi pe, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

This service places a message at the back of the specified pipe. If there is enough space in
the pipe to hold the message, this service is processed immediately. Pipe messages are
comprised of a fixed or variable-number of bytes, depending on the type of messages
supported by the pipe.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Communication Services
Parameters
Parameter Meaning
pi pe Pointer to the pipe.
nessage Pointer to the message to send.
si ze Specifies the number of bytes in the message. If the pipe
supports variable-length messages, this parameter must be equal
to or less than the message size supported by the pipe. If the pipe
supports fixed-size messages, this parameter must be the same as
the message size supported by the pipe.
suspend Specifies whether to suspend the calling task if the pipe is full.
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option Meaning

NU_NO_SUSPEND The service returns immediately regardless of whether or
not the request can be satisfied. NOTE: This is the only
valid option if the service is called from a non-task thread.
NU_SUSPEND The calling task is suspended until the message can be sent.
ti meout val ue (1 —4,294,967,293). The calling task is suspended until the
message can be sent or until the specified number of ticks
has expired.

140

Return Value

Chapter 8 - Pipes

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_PI PE

Indicates the pipe pointer is invalid.

NU_I NVALI D_POl NTER

Indicates the message pointer is NULL.

NU_I N\VALI D_SI ZE

Indicates the message size is incompatible with the message size
supported by the pipe.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_PI PE_FULL

Indicates the pipe is full.

NU_TI MEOUT

Indicates that the pipe is still full even after suspending for the
specified timeout value.

NU_PI PE_DELETED

Indicates the pipe was deleted while the task was suspended.

NU_PI PE_RESET

Indicates the pipe was reset while the task was suspended.

Example
NU_PI PE Pi pe;

UNSI GNED_CHARnessage[4] ;

STATUS st at us;

/* Build a 4-byte message to send. The contents of
“message” have no significance. */

nessage[0] = 0x01;
nessage[1] = 0x02;
message[2] = 0xO083;
message[3] = 0x04;

/* Send a 4-byte nessage to the pipe control block “Pipe”.
Do not suspend even if the pipe is full. Assune “Pipe"
has previously been created with the Nucl eus
PLUS NU Create_Pi pe service call. */
status = NU Send_To_Pi pe(&Pi pe, &ressage[0], 4, NU_NO_SUSPEND) ;

/* At this point, status indicates whether the service
request was successful. |f successful, “nessage” was

sent to “Pipe”. */

See Also

NU_Br oadcast _To_Pi pe,

NU_Recei ve_From Pi pe,

NU_Send_To_Front _O _Pi pe, NU_Pi pe_Information

141

Nucleus PLUS Reference Manual

Example Source Code

In previous sections we looked at examples that demonstrated how to communicate
between tasks with mailboxes and queues. In this section we will look at a very similar
example, but using pipes to communicate between several tasks.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

Five Nucleus PLUS structures are used in this example. Three NU_TASK structures are
used, one for each task in the system. The NU_PI PE structure is for the pipe that will be
used to communicate messages between the three tasks in the system. An
NU_MEMORY_POOL structure is also used to allocate any memory, which in this example is
for the pipe data area and a stack for each of the three tasks.

NU TASK t ask_recv_1;

NU_TASK t ask_recv_2;

NU_TASK t ask_send;

NU_PI PE pi pe_conmm

NU_MEMORY_POOL dm nenory;

The three void pointers st ack_recv_1, stack_recv_2, and st ack_send will each hold
a pointer to a separate task stack. Although not demonstrated in this program, these
pointers could be used at a later time in the program to deallocate the task stacks, or they
could be discarded if the tasks stacks will never be deallocated.

VO D *stack_recv_1;

VO D *stack_recv_2;
VA D *stack_send;

Similar to the above three void pointers, the dat a_pi pe pointer will be used to hold a
pointer to the data area for the pipe. It can either be used to deallocate the associated
memory, or discarded if memory deallocation is not necessary.

VA D *dat a_pi pe;

Delcare the task entry point function for each of the three tasks. These will later be passed
as a parameter to the NU_Cr eat e_Task call which will associate these functions with each
of their respective tasks.

void entry_recv_1(UNSI GNED argc, VO D *argv);

void entry_recv_2(UNSIGNED argc, VA D *argv);
voi d entry_send(UNSI GNED argc, VA D *argv);

Application_lnitialize will be used to create the dynamic memory pool, out of
which memory will be allocated for three task stacks, and the pipe data area. Therefore, in
Application_Initialize there are four separate calls to NU_Al | ocate_Menory.
Application_lnitialize is also used to create the pipe and associate the allocated
memory for its pipe data area.

142

Chapter 8 - Pipes

void Application_Initialize(VOD *first_avail abl e_nmenory)

Create the dynamic memory pool and associate it with the dm nmenory control block. The
memory pool will 43008 bytes large, will start at first_avail abl e_nmenory, and, if
memory is unavailable, tasks that choose to suspend will be resumed in First-In-First-Out
order. The minimum allocation from this pool will be 128 bytes. For more information on
the NU_Cr eat e_Menory_Pool call, or dynamic memory pools in general, see Chapter 4.

NU_Create_Menory_Pool (&Im menory, "sysnment, first_avail abl e_nmenory,
43008, 128, NU_FI FO);

For each task in the system, allocate 1024 bytes of memory for their respective stacks.
With the NU_Al | ocat e_Menory call, we are allocating a 1024 byte block of memory out
of the dm memory dynamic memory pool. A pointer to the newly allocated memory is
assigned to the stack_recv_1, stack_recv_2, and st ack_recv_3 respectively. the
pointer to this memory allocation is passed to the NU_Cr eat e_Task call, which will use
this memory as the task stack.

For this demonstration, note that t ask_recv_1 and task_recv_2 are given a higher
priority (priority level of 7) than task_send. By doing this, we are ensuring that
task_recv_1 and task_recv_2 will always run before t ask_send. The t ask_send
will only run when both t ask_recv_1 and t ask_r ecv_2 are suspended.

NU_Al | ocat e_Menory(&Im nenory, &stack_recv_1, 1024, NU_NO_SUSPEND) ;

NU _Create_Task(&t ask_recv_1, "recv_1", entry recv_1, 0, NU NULL,
stack_recv_1, 1024, 7, 0, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_recv_2, 1024, NU_NO_SUSPEND) ;
NU _Creat e_Task(&t ask_recv_2, "recv_2", entry recv_2, 0, NU NULL,
stack_recv_2, 1024, 7, 0, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_send, 1024, NU_NO_SUSPEND) ;
NU_Creat e_Task(& ask_send, "send", entry_send, 0, NU NULL,
stack_send, 1024, 8, 0, NU _PREEMPT, NU_START);

Allocate memory for the pipe data area with a call to NU_Al | ocat e_Menory. This call
allocates 32768 bytes out of the dm nmenory dynamic memory pool, and assigns a pointer
to this memory to the dat a_pi pe void pointer. Then call NU_Cr eat e_Pi pe to associate
this memory to the pipe comm pipe. The pi pe_conmm pipe is a pipe with fixed sized
messages (NU_FI XED_SI ZE), and each message will be 8 bits in size. The pipe is
associated with the name “comm” and tasks that choose to suspend on this pipe will
resumed in First-In-First-Out order.

143

Nucleus PLUS Reference Manual

NU_Al | ocat e_Menory(&Im nenory, &data_pi pe, 32768, NU_NO_SUSPEND) ;

NU_Cr eat e_Pi pe(&i pe_comm "commi', data_pi pe, 32768, NU_FI XED_SI ZE,

1, NUFIFO;

}

The entry recv_1 and entry_recv_2 functions serve as the entry point for the
task_recv_1 and task_recv_2 tasks respectively. The tasks will continuously loop,
issuing an NU _Recei ve_From Pi pe call for each iteration of the loop. The
NU_Recei ve_From Pi pe will suspend until there is a message placed into the pipe (as
indicated by NU_SUSPEND). Whenever a message is received, NU_Recei ve_From Pi pe
will exit with a return value of NU_SUCCESS. After the call has returned, r ecvirsg will
contain the message received. Therefore, there are two tasks that are continuously
suspending on the same pipe, both waiting for a message to be placed into the pipe.

The PLUS scheduler will resume these tasks based on the suspend_t ype flag that was
specified when the pi pe_commpipe was created.

void entry_recv_1(UNSI GNED argc, VO D *argv)

{
CHAR recvnsg;

UNSI GNED act ual _si ze;
whi | e(1)

i f (NU_Recei ve_From Pi pe(&pi pe_comm &recvnsg, 1, &actual _size,
NU_SUSPEND) == NU_SUCCESS)

{
}
el se
{
}
}
}
void entry_recv_2(UNSI GNED argc, VO D *argv)
{
CHAR recvnsg;

UNSI GNED act ual _si ze;
whi | e(1)

i f (NU_Recei ve_From Pi pe(&pi pe_conm &recvnsg, 1, &actual _si ze,
NU_SUSPEND) == NU_SUCCESS)

144

Chapter 8 - Pipes

The function entry_send serves as the task entry point for the t ask_send task. Note
that the t ask_recv_1 and t ask_r ecv_2 tasks are of a higher priority, and will always
be given first chance to run. Because of this, whenever task send sends a message with
pi pe_conm either t ask_r ecv_1 or t ask_r ecv_2 will be immediately resumed.

The t ask_send task continuously loops, and for each iteration of the loop it makes calls
to two different PLUS services. The first service call is to NU_Send_To_Pi pe which will
send a single message with the pi pe_conmpipe. The second service call that is issued is
NU_Br oadcast _To_Pi pe, which will send the message to every task that is currently
suspended on this pipe. Note that in this example, whenever this task is running, there will
always be two tasks (task_recv_1 and task_recv_2) suspended on the pi pe_conm
pipe. The result is that the message that is sent with NU_Send_To_Pi pe will only be
received by one of the suspended tasks, while the message sent with
NU_Br oadcast _To_Pi pe will be received by both suspended tasks.

voi d entry_send(UNSI GNED argc, VO D *argv)
{
UNSI GNED sendnsg;
whi | e(1)
Assign decimal 1 to sendnsg, then issue NU_Send_To_Pi pe on the pi pe_conm pipe.
Since two tasks will always be suspended on this pipe, and the pipe was created with the

NU_FI FO suspension flag, the first task that suspended on the pipe will always receive this
message.

sendnsg=1;

i f (NU_Send_To_Pi pe(&pi pe_comm &sendnsg, 1, NU_SUSPEND)
== NU_SUCCESS)

{

}

el se

{

}

Assign decimal 2 to sendnsg, then issue NU_Br oadcast _To_Pi pe on the pi pe_conmm
pi pe. Because the priority of t ask_recv_1 and t ask_recv_2 are of a higher priority
than this task, we are guaranteed that two tasks will always be suspended on this pipe.
Therefore, the result of the NU_Br oadcast _To_Pi pe service is that both tasks will be
sent the message.

sendnsg=2;

i f (NU_Broadcast_To_Pi pe(&pi pe_comm &sendnsg, 1, NU_SUSPEND)
== NU_SUCCESS)

{

}

el se

{

}

145

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
Ics

Gra

146

Semaphores

Introduction

Function Reference

Example Source Code

147

Nucleus PLUS Reference Manual

Introduction

Semaphores provide a mechanism to control execution of critical sections of an
application. Nucleus PLUS provides counting semaphores that range in value from 0 to
4,294,967,294. The two basic operations on a semaphore are obtain and release. Obtain-
semaphore requests decrement the semaphore, while release-semaphore requests
increment the semaphore.

Resource allocation is the most common application of a semaphore. Additionally,
semaphores created with an initial value can be used to indicate an event.

Suspension

The obtain-semaphore service provides options for unconditional suspension, suspension
with a timeout, and no suspension.

A task attempting to obtain a semaphore whose count is currently zero can suspend.
Resumption of the task is possible when a release-semaphore request is made.

Multiple tasks may suspend trying to obtain a single semaphore. Tasks are suspended in
either FIFO or priority order, depending on how the semaphore was created. If the
semaphore supports FIFO suspension, tasks are resumed in the order in which they tried to
obtain the semaphore. Otherwise, if the semaphore supports priority suspension, tasks are
resumed from high priority to low priority.

Deadlock

A deadlock refers to a situation where two or more tasks are forever suspended attempting
to obtain two or more semaphores. The simplest example of this situation is a system with
two tasks and two semaphores. Suppose the first task has the second semaphore and the
second task has the first semaphore. Now suppose that the second task attempts to obtain
the second semaphore and the first task attempts to obtain the first semaphore. Since each
task has the semaphore that the other needs, the tasks could suspend on the semaphores
forever.

Prevention is the preferred way to deal with deadlocks. This technique imposes rules on
how semaphores are used by the application. For example, if tasks are not allowed to
possess more than one semaphore at a time, deadlocks are prevented. Alternatively,
deadlocks may be prevented if tasks obtain multiple semaphores in the same order.

The optional timeout on obtain-semaphore suspension can be used to recover from a
deadlock situation.

148

Chapter 9 - Semaphores

Priority Inversion

Priority inversion occurs when a higher priority task is suspended on a semaphore that a
lower priority task has. This situation is unavoidable if different priority tasks share the
same protected resources. In such situations, a limited and predictable amount of time in
priority inversion is acceptable.

However, if the low priority task is preempted by a middle priority task during a priority
inversion situation, the amount of time in priority inversion is no longer deterministic. Such
a situation can be avoided by insuring that all tasks using the same semaphore have the
same priority, at least while they own the semaphore.

Dynamic Creation

Nucleus PLUS semaphores are created and deleted dynamically. There is no preset limit
on the number of semaphores an application may have. Each semaphore requires a control
block. The memory for the control block is supplied by the application. Semaphores may
be created with any initial count.

Determinism

Processing time required for obtaining and releasing semaphores is constant. However, the
processing time required to suspend a task in priority order is affected by the number of
tasks currently suspended on the semaphore.

Semaphore Information

Application tasks can obtain a list of active semaphores. Detailed information about each
semaphore is also available. This information includes the semaphore name, current count,
suspension type, number of tasks waiting, and the first task waiting.

Function Reference

The following function reference contains all functions related to Nucleus PLUS
semaphores. The following functions are contained in this reference:

NU_Cr eat e_Senmphore

NU_Del et e_Semaphor e
NU_Est abl i shed_Semaphor es
NU_Obt ai n_Semaphor e
NU_Rel ease_Semaphor e
NU_Reset _Semaphore
NU_Senaphor e_I nfornati on
NU_Semaphor e_Poi nters

149

Nucleus PLUS Reference Manual

NU_Cr eat e_Semaphor e

STATUS NU_Cr eat e_Semaphor e(NU_SEMAPHORE *senmphor e,
CHAR *nane,
UNSI GNED i ni tial _count,
OPTI ON suspend_t ype)

This service creates a counting semaphore. Semaphore values can range from 0 through
4,294,967, 294.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler,
Task
Category Task Synchronization Services
Parameters
Parameter Meaning
senaphor e Pointer to the user-supplied semaphore control block.
Note: Subsequent requests made to the semaphore
require this pointer.
nane Pointer to an 8-character name for the semaphore. The
name does not have to be null-terminated.
i nitial_count Specifies the initial count of the semaphore.
suspend_t ype Specifies how tasks suspend on the semaphore. Valid

options for this parameter are NU_FI FO and
NU_PRI ORI TY, which represent First-In-First-Out
(FI FO) and priority-order task suspension, respectively.

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_SEMAPHORE | Indicates the semaphore control block pointer is NULL
or is already in use.

NU_I'NVALI D_SUSPEND Indicates the suspend_t ype parameter is invalid.

150

Chapter 9 - Semaphores

Example

/* Assunme semaphore control block “Senmaphore” is defined
as global data structure. This is one of several ways
to allocate a control bl ock. */

NU_SEMAPHORE Senaphor €;

/* Assume status is defined locally. */
STATUS st at us; /* Semaphore creation status */

/* Create a semaphore with an initial count of 1 and priority
order task suspension. */

status = NU_Create_Senaphor e(&Semaphore, “any nane”, 1,
NU_PRI ORI TY) ;

/* status indicates if the service was successful. */

See Also

NU_Del et e_Semaphore, NU_Est abl i shed_Semaphor es,
NU_Senmaphor e_Poi nters, NU_Senmaphore_I nfornation

151

Nucleus PLUS Reference Manual

NU Del et e_Semaphor e
STATUS NU_Del et e_Sermaphor e(NU_SEMAPHORE *semaphor e)

This service deletes a previously created semaphore. The parameter semaphore identifies
the semaphore to delete. Tasks suspended on this semaphore are resumed with the
appropriate error status. The application must prevent the use of this semaphore during
and after deletion.

Overview

Option

Tasking Changes Yes

Allowed From Application_lnitialize, HISR, Signal Handler,

Task

Category Task Synchronization Services
Parameters

Parameter Meaning

senaphor e Pointer to the user-supplied semaphore control block.
Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_SEVAPHORE Indicates the semaphore pointer is invalid.

Example

NU_SEMAPHORE Senaphor €;
STATUS st at us

/* Del ete the semaphore control block “Senmaphore”. Assune
“Semaphore” has previously been created with the Nucl eus
PLUS NU_Creat e_Semaphore service call. */

status = NU_Del et e_Semaphor e(&Senmaphor e) ;

/* At this point, status indicates whether the service
request was successful. */

See Also

NU_Cr eat e_Semaphore, NU_Establ i shed_Semaphor es,
NU_Senmaphor e_Poi nters, NU_Senmaphore_I nfornation

152

Chapter 9 - Semaphores

NU_Est abl i shed_Semaphor es
UNSI GNED NU_Est abl i shed_Senmaphor es(VA D)

This service returns the number of established semaphores. All created semaphores are
considered established. Deleted semaphores are no longer considered established.

Overview

Option
Tasking Changes No

Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Synchronization Services

Parameters

None

Return Value

This service call returns the number of created pipes in the system.

Example
UNSI GNED t ot al _senaphor es;

/* Cpbtain the total number of semaphores. */
tot al _semaphores = NU_Est abl i shed_Semaphores();

See Also

NU_Cr eat e_Semaphore, NU Del et e_Senaphore, NU Senmaphore_Poi nters,
NU_Semaphor e_| nformati on

153

Nucleus PLUS Reference Manual

NU_Cbt ai n_Semaphor e

STATUS NU_Obt ai n_Semaphor e(NU_SEMAPHORE *senmphor e,

UNSI GNED suspend)

This service obtains an instance of the specified semaphore. Since “instances” are
implemented with an internal counter, obtaining a semaphore translates into decrementing
the semaphore’s internal counter by one. If the semaphore counter is zero before this call,
the service cannot be immediately satisfied. The parameters of this service are further

defined as follows:

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
senaphor e Pointer to the user-supplied semaphore control block.
suspend Specifies whether or not to suspend the calling task if the
semaphore cannot be obtained (is currently zero).
Suspension

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or not
the request can be satisfied. Note: this is the only valid option
if the service is called from a non-task thread.

NU_SUSPEND

The calling task is suspended until the message can be copied
into the mailbox.

ti meout val ue

(1 -4,294,967,293). The calling task is suspended until the
message can be copied into the mailbox or until the specified
number of ticks has expired.

154

Chapter 9 - Semaphores

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_SEMAPHORE | Indicates the semaphore pointer is invalid.

NU_I NVALI D_SUSPEND Indicates that suspend attempted from a non-task thread.
NU_SEMAPHORE_DELETED | Semaphore was deleted while the task was suspended.
NU_SEMAPHORE_RESET Semaphore was reset while the task was suspended.

NU_TI MEQUT Indicates that the semaphore is still unavailable even after
suspending for the specified timeout value.
NU_UNAVAI LABLE Indicates the semaphore is unavailable.
Example

NU_SEMAPHORE Senaphor €;
STATUS st at us

/* Obtain an instance of the semaphore control bl ock
“Semaphore”. |f the senmaphore is unavail able, suspend
for a maxi mum of 20 tinmer ticks. Note: the order of nultiple
tasks suspendi ng on the sane semaphore is deterni ned when
the semaphore is created. Assume ”"Semaphore” has previously
been created with the Nucl eus PLUS NU Creat e_Semaphore
service call. */

status = NU Obtai n_Semaphor e(&Senmaphore, 20);

/* At this point, status indicates whether the service request was
successful . */

See Also

NU_Rel ease_Semaphore, NU_Seraphore_I nformation

155

Nucleus PLUS Reference Manual

NU_Rel ease_Senaphor e
STATUS NU_Rel ease_Senaphor e(NU_SEMAPHORE * senmaphor e)

This service releases an instance of the semaphore specified by the parameter
semaphor e. If there are any tasks waiting to obtain the same semaphore, the first task
waiting is given this instance of the semaphore. Otherwise, if there are no tasks waiting
for this semaphore, the internal semaphore counter is incremented by one.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal
Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
semaphore Pointer to the user-supplied semaphore control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_SEVAPHORE Indicates the semaphore pointer is invalid.

Example

NU_SEMAPHORE Senaphor e;
STATUS st at us;

/* Rel ease an instance of the semaphore control bl ock
“Semaphore”. |f other tasks are waiting to obtain the
same semaphore, this service results in a transfer of
this instance of the semaphore to the first task waiting.
Assume “Semaphore” has previously been created with the
Nucl eus PLUS NU_Creat e_Senaphore service call. */

status = NU_Rel ease_Senaphor e(&Senaphore) ;

See Also

NU_Obt ai n_Sermaphore, NU_Semaphore_I nf ormati on

156

Chapter 9 - Semaphores

NU_Reset Senmaphore

STATUS NU_Reset _Senmaphor e(NU_SEMAPHORE *senmphor e,
UNSI GNED i ni tial _count)

This service resets the semaphore specified by semaphore to the value of
i nitial_count. All tasks suspended on the semaphore are resumed with the appropriate
reset status.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler,
Task
Category Task Synchronization Services
Parameters
Parameter Meaning
senaphore Pointer to the user-supplied semaphore control block.
initial_count Specifies the initial count of the semaphore.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_SEMAPHORE Indicates the semaphore pointer is invalid.

Example

NU_SEMAPHORE Senaphor e;
STATUS st at us

/* Reset the semaphore control block “Semaphore”. The initial
count is set to 1. Assunme “Semaphore” has previously been
created with the Nucl eus PLUS NU Create_Semaphore service call. */
status = NU_Reset_Semaphore(&Senmaphore, 1);

See Also

NU_Obt ai n_Sermaphore, NU_Rel ease_Semaphore, NU_Semaphore_I| nformation

157

Nucleus PLUS Reference Manual

NU_Semaphor e_I nf ormati on

STATUS NU_Semaphor e_I nf or mat i on(NU_SEMAPHORE * semaphor e,

This service returns various information about the specified task synchronization

CHAR *nane,

UNSI GNED *current _count,
OPTI ON *suspend_t ype,
UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

semaphore. The parameters of this service are further defined as follows:

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler,
Task
Category Task Synchronization Services
Parameters
Parameter Meaning
semaphore Pointer to the synchronization semaphore.
name Pointer to an 8-character destination area for the

semaphore’s name.

current _count

Pointer to a variable to hold the current instance count of
the semaphore.

suspend_t ype

Pointer to a variable that holds the task’s suspend type.
Valid task suspend types are NU_FI FO and
NU PRI ORI TY.

tasks_waiting

Pointer to a variable to hold the number of tasks waiting
on the queue.

first_task

Pointer to a task pointer. The pointer of the first
suspended task is placed in the task pointer.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_SEMAPHORE

Indicates the semaphore pointer is invalid.

158

Chapter 9 - Semaphores

Example
NU_SEMAPHORE Senaphor €;
CHAR semaphor e_nane[8] ;
UNSI GNED current_count;
OPTI ON suspend_t ype;
UNSI GNED t asks_suspended;
NU_TASK *first_task;

STATUS st at us;

/* Qbtain informati on about the semaphore control bl ock

“Semaphore”. Assume “Semaphore” has previously been
created with the Nucl eus PLUS NU Create_Semaphore service
call. */

status = NU_Semaphor e_I nf or mat i on(&Semaphor e, semaphore_nane,
¤t _count,
&suspend_t ype,
&t asks_suspended,
&first_task);

/* |If status is NU SUCCESS, the other information is accurate. */

See Also

NU_Cr eat e_Semaphore, NU Del et e_Semaphor e,
NU_Est abl i shed_Semaphores, NU_Semaphore_Poi nters

159

Nucleus PLUS Reference Manual

NU_Sermaphor e_Poi nters

UNSI GNED NU_Senaphor e_Poi nt er s(NU_SEMAPHORE **poi nter _|i st,
UNSI GNED maxi mum _poi nt ers)
This service builds a sequential list of pointers to all established semaphores in the system.

NOTE: Semaphores that have been deleted are no longer considered established.

& The parameter pointer_list points to the location for building the list of
pointers, while maxi num poi nters indicates the maximum size of the list.
This service returns the actual number of pointers in the list. Additionally, the list
is ordered from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
pointer_list Pointer to an array of NU_SEMAPHORE pointers. This array will
be filled with pointers of established semaphores in the system.
maxi num_poi nters | The maximum number of NU_SEMAPHORE pointers to place
into the array. Typically, this will be the size of the
poi nter_|ist array.

Return Value

This service call returns the number of created semaphores in the system.

160

Chapter 9 - Semaphores

Example
/* Define an array capabl e of hol ding 20 semaphore pointers. */

NU_SEMAPHORE * Poi nt er _Array[20] ;
UNSI GNED nunber ;

/* obtain a list of currently active semaphore pointers
(Maxi mum of 20). */
nunmber = NU_Semaphor e_Poi nt er s(&Poi nter _Array[0], 20);

/* At this point, nunber contains the actual nunber
of pointers in the list. */

See Also

NU_Cr eat e_Semaphore, NU _Del et e_Semaphor e,
NU_Est abl i shed_Semaphores, NU_Sermaphore_I nfornati on

161

Nucleus PLUS Reference Manual

Example Source Code

The following source code will demonstrate how to use the basic semaphore function calls.
Semaphores are generally used to control access to either a mutually exclusive device, or
to a piece of mutually exclusive data, such as a global variable. This example demonstrates
both of these uses. The function i ni t _devi ce() demonstrates how a semaphore can be
used to protect a global variable against being modfied by multiple tasks simultaneously.
To demonstrate using a semaphore to protect a mutually exclusive device, the function
write_to_device uses the same semaphore as it’s device protection mechanism.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

Define a structure typedef called BUFFER, and declare an instance of this structure called
nmy_devi ce. This example will then protect this global variable by obtaining a semaphore
before every modification.

typedef struct BUFFER _STRUCT

{

CHAR buf[128];

UNSI GNED r ead;

UNSI GNED wri te;

UNSI GNED num entri es;
} BUFFER;

BUFFER ny_devi ce;

This program will use four PLUS structures. The variables t ask_1 and t ask_2 are both
task control blocks (NU_TASK) which will be used to write to the mutually exclusive
device. The semaphore control block, semaphor e_devi ce will be used to control access
to the device buffer. Lastly, the dynamic memory pool control block will be used to
allocate any memory required by this program.

NU_TASK task_1;

NU _TASK t ask_2;

NU_SEMAPHORE senaphor e_devi ce;
NU_MEMORY_POOL dm nenory;

The two void pointers st ack_1, stack_2, will each hold a pointer to a separate task
stack. Although not demonstrated in this program, these pointers could be used at a later
time in the program to deallocate the task stacks, or they could be discarded if the tasks
stacks will never be deallocated.

VA D *stack_1;
VA D *stack_2;

Delcare the task entry point function for each of the tasks. These will later be passed as a
parameter to the NU_Cr eat e_Task call which will associate these functions with each of
their respective tasks.

162

Chapter 9 - Semaphores

void entry_1(UNSI GNED argc, VO D *argv);
void entry_2(UNSI GNED argc, VO D *argv);

Two other functions will be used in this demonstration: init_devi ces, and
write_to_device. The function i nit_devi ces will be used to initialize the global
variable, and will be protected with the previously declared semaphor e_devi ce. The
function write_to_device will use this same semaphore to protect the mutually
exclusive device.

voi d init_device();
void wite_to_device(CHAR witechar);

Application_lnitialize isused to create any PLUS structures, allocate any required
memory, and to perform any other system initialization that is necessary. Specific to this
example, Application_Initialize is used to create the dynamic memory pool,
dm nmenor y, allocate memory for, and create the two tasks: t ask_1, and t ask_2, and also
create semaphore_devi ce. Lastly, a call to the function i nit_devi ces is made to
initialize the global structure my_device.

VO D Application_Initialize(VOD *first_avail abl e_nmenory)

Create the dynamic memory pool and associate it with the dm nmenory control block. The
memory pool will be 10240 bytes large, will start at fi r st _avai | abl e_nenory, and, if
memory is unavailable, tasks that choose to suspend will be resumed in First-In-First-Out
order. The minimum allocation from this pool will be 128 bytes. For more information on
the NU_Cr eat e_Menory_Pool call, or dynamic memory pools in general, see Chapter 4.

NU_Cr eat e_Menory_Pool (&Im nenory, "sysneni, first_avail abl e_nenory,
10240, 128, NU_FIFO;

For each task in the system, allocate 1024 bytes of memory for their respective stacks.
With the NU_Al | ocat e_Menory call, we are allocating a 1024 byte block of memory out
of the dm nenory dynamic memory pool. A pointer to the newly allocated memory is
assigned to stack_1, and st ack_2 respectively. The pointer to this memory allocation is
passed to the NU_Cr eat e_Task call, which will use this memory as the task stack.

NU_Al | ocat e_Menory(&Im nenory, &stack_1, 1024, NU_NO_SUSPEND) ;

NU Create_Task(& ask_1, "TASK1", entry_1, 0, NU_NULL, stack_1,
1024, 10, 2, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_2, 1024, NU_NO_SUSPEND) ;
NU Create_Task(& ask_2, "TASK2", entry_2, 0, NU_NULL,
stack_2, 1024, 10, 2, NU_PREEMPT, NU_START);

Create the semaphore that will be used to protect the mutually exclusive structure. The
semaphor e_devi ce semaphore is named “DEVICE”, is created with an initial count of 1,
and tasks that choose to suspended on this semaphore will be resumed in First-In-First-Out
order. Nucleus PLUS semaphores can be counting semaphores if the semaphore is created
with a count higher than 1. In such a case, the semaphore can be obtained up to the number
of times specified.

163

Nucleus PLUS Reference Manual

NU_Cr eat e_Senaphor e(&senaphor e_devi ce, "DEVICE', 1, NU_FI FO;
Make the function call to init_devi ces. This function will use the above created
semaphore to protect the global structure ny_devi ce.

init_device();

Both tasks in the system (task_1 and task_2) continuously loop, making a call to
write_to_device for each iteration of the loop. In the case of task_1 (which is
associated to the entry point entry_1) the task writes a single character, “1”, to the
device. Accordingly, t ask_2 (associated to the entry point ent ry_2) will write a “2” to
the device for each iteration of the loop.

void entry_1(UNSI GNED argc, VO D *argv)
{
whi | e(1)

wite_to_device('1l');

}
}

void entry_2(UNSI GNED argc, VO D *argv)
whi | e(1)
{
wite to_device('2");

}

The function init_device is used to simulate initializing a device. If using real
hardware, this function may setup control registers, clear out data buffers, or any other
device dependent initialization. In this example however, we will use a global structure,
ny_devi ce, to simulate the device. Since this device is mutually exclusive it is protected
by using the semaphore device semaphore. Note that this protection is only necessary if
multiple threads of execution could be initializing the device simulaneously.

void init_device()

{

Obtain the semaphore, semaphor e_devi ce. Since this semaphore was created with a
count of 1, only one thread of execution can have possession of the semaphore at any
given time. Therefore, we are guarranteed that only one task at a time can be modifying
the nmy_devi ce structure.

NU_Qbt ai n_Senmaphor e(&semaphor e_devi ce, NU_SUSPEND) ;

164

Chapter 9 - Semaphores

Modify the global variable. In the case of real hardware, the following code could be
replaced with control register initialization, clearing bufferes, or any other device
dependent initialization that may be required.

nmy_devi ce.read = 0;

nmy_device.wite = 0;
my_devi ce. numentries = 0;

When finished modifying the mutually exclusive data, release the semaphore so that other
threads of execution can then modify the structure.

NU_Rel ease_Senaphor e(&senaphor e_devi ce) ;

}

Similar to the i nit_devi ce function, the following function, write_t o_devi ce will
use the semaphor e_devi ce semaphore to protect the mutually exclusive device. In this
example, both t ask_1, and t ask_2 (see their respective task entry points, entry_1 and
entry_2) are using this function to write to the device. Since the semaphore,
semaphor e_devi ce was created as a binary semaphore (count 1), only one of these tasks
can be modifying the device at any given time.

void wite_to_devi ce(CHAR witechar)

{

Make a call to NU_Obt ai n_Semaphor e to obtain the semaphore. If a task already has
possession of the semaphore, then the task making the second request will be suspended
because suspension was requested by specifying the NU_SUSPEND option.

NU_Qobt ai n_Senmaphor e(&emaphor e_devi ce, NU_SUSPEND) ;

Make any necessary modifications to the buffer. If actual hardware were being used, a
transmit finished interrupt could be used to read data out of this buffer and place it onto the
device. Alternately, one could choose not to use a buffer, and the following code could be
replace with code to place the data onto the physical device.

ny_devi ce. buf [ny_device.wite] = witechar;
nmy_device. wite++;

if (ny_device.wite >= 128)
ny_device.wite = O0;

if (nmy_device.numentries < 128)
ny_devi ce. num entri es++;

el se
nmy_device.read = ny_device.wite;

Release the semaphor e_devi ce semaphore so that other tasks can modify the device.

NU_Rel ease_Semaphor e(&enmaphor e_devi ce) ;

}

165

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
Ics

Gra

166

Event Groups

Introduction

Function Reference

Example Source Code

167

Nucleus PLUS Reference Manual

Introduction

Event groups provide a mechanism to indicate that a certain system event has occurred.
An event is represented by a single bit in an event group. This bit is called an event flag.
There are 32 event flags in each event group.

Event flags can be set and cleared using logical AND/OR combinations. Event flags can
be received in logical AND/OR combinations as well. Additionally, event flags may be
reset automatically after they are received.

Suspension

The receive event flag requests provide options for unconditional suspension, suspension
with a timeout, and no suspension.

A task attempting to receive a combination of event flags that are not present can suspend.
Resumption of the task occurs when a set-event-flags operation satisfies the combination
of events requested by the task.

Multiple tasks may suspend trying to receive different combinations of event flags from
the same event group. All tasks suspended on an event group are checked for resumption
when a set-event-flags operation is performed on the event group.

Dynamic Creation

Nucleus PLUS event groups are created and deleted dynamically. There is no preset limit
on the number of event groups an application may have. Each event group requires a
control block. The memory for the control block is supplied by the application.

Determinism

Processing time required for receiving event flags from an event group is constant.
However, the processing time required to set event flags in an event group is affected by
the number of tasks suspended on the event group.

Event Group Information

Application tasks may obtain a list of active event groups. Detailed information about
each event group is also available. This information includes the event group name,
current event flags, number of tasks waiting, and the first task waiting.

168

Chapter 10 - Event Groups

Function Reference

The following function reference contains all functions related to Nucleus PLUS event
groups. The following functions are contained in this reference:

NU_Creat e_Event _G oup

NU _Del et e_Event _Group
NU_Est abl i shed_Event _G oups
NU_Event _Group_l nformation
NU_Event _Goup_Pointers

NU Retrieve_Events

NU_Set _Events

169

Nucleus PLUS Reference Manual

NU Create_Event G oup

STATUS NU_Create_Event _G oup(NU_EVENT_GROUP *gr oup,
CHAR *nane)

This service creates an event flag group. Each event flag group contains 32 event flags.
All event flags are initially set to 0. The parameters to this service are further defined as
follows:

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
group Pointer to the user-supplied event flag group control block.

NOTE: All subsequent requests made to the event group
require this pointer.

name Pointer to an 8-character name for the event flag group. The
name does not have to be null-terminated.

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I'NVALI D_GROUP | Indicates the event group control block pointer is NULL or is
already in use.

170

Chapter 10 - Event Groups

Example

/* Assunme event group control block “Events” is defined
as a global data structure. This is one of several ways
to allocate a control bl ock. */

NU_EVENT_GROUP Events;
/* Assume status is defined locally. */
STATUS status; /* Event group creation status */

/* Create an event flag group. */
status = NU Create_Event G oup(&Events, “any name”);

/* At this point status indicates if the service was successful.

See Also

NU_Del et e_Event _Group, NU_Established_Event G oups,
NU_Event _Group_Pointers, NU Event_Group_Infornation

*/

171

Nucleus PLUS Reference Manual

NU Del et e _Event G oup
STATUS NU_Del et e_Event _G oup(NU_EVENT_GROUP *gr oup)

This service deletes a previously created event flag group. The parameter group
identifies the event flag group to delete. Tasks suspended on this event group are resumed
with the appropriate error status. The application must prevent the use of this event group
during and after deletion.

Overview
Option
Tasking Changes Yes
Allowed From Application_Initialize, HISR, Signal Handler,
Task
Category Task Synchronization Services
Parameters
Parameter Meaning
group Pointer to the user-supplied event flag group control
block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_GROUP Indicates the event flag group pointer is invalid.
Example
NU_EVENT_GROUP G oup;
STATUS st at us

/* Delete the event flag group control block “G oup”.
Assunme “Goup” has previously been created with
the Nucl eus PLUS NU Create_Event _Goup service call. */
status = NU Del ete_Event _G oup(&G oup) ;

/* At this point, status indicates whether the service
request was successful. */

See Also

NU_Creat e_Event G oup, NU Established_Event G oups,
NU_Event _Group_Pointers, NU Event G oup_Il nformation

172

Chapter 10 - Event Groups

NU _Est abl i shed _Event Groups
UNSI GNED NU_Est abl i shed_Event _Groups(VO D)

This service returns the number of established event-flag groups. All created event-flag
groups are considered established. Deleted event-flag groups are no longer considered
established.

Overview

Option
Tasking Changes No

Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Synchronization Services

Parameters

None

Return Value

This service call returns the number of created event groups in the system.

Example
UNSI GNED t ot al _event _groups;

/* Cbtain the total number of event flag groups. */
total _event_groups = NU Established_Event _G oups();

See Also

NU_Creat e_Event _Group, NU Del ete_Event G oup,
NU_Event _Group_Poi nters, NU Event_Group_Information

173

Nucleus PLUS Reference Manual

NU _Event Group_I nformation

STATUS NU_Event _Group_I nformati on(NU_EVENT_GROUP *gr oup,

CHAR *nane,

UNSI GNED *event _fl ags,
UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

This service returns various information about the specified event flag group.

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
group Pointer to the user-supplied event flag group control block.
nane

Pointer to an 8-character destination area for the event flag
group’s name.

event _fl ags

Pointer to a variable to hold the current event flags.

tasks_waiting

Pointer to a variable to hold the number of tasks waiting on
the event flag group.

first_task

Pointer to a task pointer. The pointer of the first suspended
task is placed in this task pointer.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_| NVALI D_GROUP

Indicates the event flag group pointer is invalid.

174

Chapter 10 - Event Groups

Example
NU_EVENT_GROUP G oup;
CHAR group_nane[8] ;
UNSI GNED event _fl ags;
UNSI GNED t asks_suspended;
NU_TASK *first_task;
STATUS st at us

/* Obtain informati on about the event group control bl ock
“Goup”. Assume “Group” has previously been created
with the Nucl eus PLUS NU Create_Event _Group service call.*/
status = NU Event_G oup_I nformati on(&G oup, group_nane,
&event _fl ags,
&t asks_suspended,
&first_task);

/* |f status is NU SUCCESS, the other information is
accurate. */

See Also

NU_Creat e_Event _Group, NU Del ete_Event G oup,
NU_Est abl i shed_Event G oups, NU_Event G oup_Pointers

175

Nucleus PLUS Reference Manual

NU Event Group_ Pointers

UNSI GNED NU_Event _Group_Poi nt er s(NU_EVENT_GROUP *poi nter_Ii st,
UNSI GNED maxi mum_poi nt ers)

This service builds a sequential list of pointers to all established event-flag groups in the
system.

& NOTE: Event flag-groups that have been deleted are no longer considered

established. The parameter poi nter_li st points to the location for building the

list of pointers, while maxi mum poi nt er s indicates the maximum size of the list.

This service returns the actual number of pointers in the list. Additionally, the list is
ordered from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
poi nter_list Pointer to an array of NU_EVENT_GROUP pointers. This array
will be filled with pointers of established semaphores in the
system.
mexi num_ poi nt ers The maximum number of NU_EVENT_GROUP pointers to place
into the array. Typically, this will be the size of the
poi nter_|ist array.

Return Value

This service call returns the number of created event groups in the system.

176

Chapter 10 - Event Groups

Example

/* Define an array capable of holding 20 event flag
group pointers. */

NU_EVENT_GROUP *Poi nt er _Array[20] ;

UNSI GNED nunber ;

/* Cpbtain a list of currently active event flag group
poi nters (Maxi mum of 20). */
nunmber = NU_Event _G oup_Poi nt ers(&Poi nter_Array[0], 20);

/* At this point, nunber contains the actual nunber
of pointers in the list. */

See Also

NU_Creat e_Event _Group, NU Del ete_Event G oup,
NU_Est abl i shed_Event _Groups, NU _Event _Group_Information

177

Nucleus PLUS Reference Manual

NU Retrieve Events

STATUS NU_Retri eve_Event s(NU_EVENT_GROUP *group,

UNSI GNED r equest ed_event s,
OPTI ON operati on,

UNSI GNED *retrieved_events,
UNSI GNED suspend)

This service retrieves the specified event-flag combination from the specified event-flag
group. Ifthe combination is present, the service completes immediately.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
group Pointer to the user-supplied event flag group control block.

request ed_events

Requested event flags. A set bit indicates the corresponding
event flag is requested.

oper ation

There are four operation options available: NU_AND,
NU_AND_CONSUME, NU_OR, and NU_OR_CONSUME. NU_AND
and NU_AND CONSUME options indicate that all of the
requested event flags are required. NU_OR and
NU_OR_CONSUME options indicate that one or more of the
requested event flags is sufficient. The CONSUME option
automatically clears the event flags present on a successful
request.

retrieved_events

Contains the event flags actually retrieved.

suspend

Specifies whether to suspend the calling task if the requested
event flag combination is not available.

178

Suspension

Chapter 10 - Event Groups

The following table summarizes the possible values for the suspend parameter.

Suspension Option

Meaning

NU_NO_SUSPEND

The service returns immediately regardless of whether or
not the request can be satisfied. NOTE: This is the only
valid option if the service is called from a non-task
thread.

NU_SUSPEND

The calling task is suspended until the message can be
copied into the mailbox.

ti meout val ue

(1 -4,294,967,293). The calling task is suspended until
the message can be copied into the mailbox or until the
specified number of ticks has expired.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_| NVALI D_GROUP

Indicates the event flag group pointer is invalid.

NU_I NVALI D_PO NTER

Indicates the retrieved event flag pointer is NULL.

NU_I NVALI D_OPERATI ON

Indicates the oper ati on parameter is invalid.

NU_I NVALI D_SUSPEND

Indicates that suspend attempted from a non-task thread.

NU_NOT_PRESENT

Indicates the requested event flag combination is not
currently present.

NU_TI MEOUT

Indicates the requested event flag combination is not
present even after the specified suspension timeout.

NU_GROUP_DELETED

Indicates the event flag group was deleted while the task
was suspended.

179

Nucleus PLUS Reference Manual

Example
NU_EVENT_GROUP G oup;
UNSI GNED actual _fl ags;
STATUS st at us;

/* Retrieve event flags 7, 2, and 1 fromthe event group

control block “Group”. Note: all event flags nust be

present to satisfy the request. |If they are not, the

calling task suspends unconditionally. Also, event

flags 7, 2, and 1 are consuned when this request is

satisfied. Assune “G oup” has previously been created

with the Nucl eus PLUS NU Create_Event _Group service call. */

status = NU Retrieve Events(&G oup, 0x86, NU AND CONSUVE,

&act ual _f | ags, NU_SUSPEND) ;

See Also
NU_Set _Events, NU_Event G oup_Il nformation

180

NU Set Events

Chapter 10 - Event Groups

STATUS NU_Set Event s(NU_EVENT_GROUP *group,
UNSI GNED event _fl ags,
OPTI ON oper ati on)

This service sets the specified event flags in the specified event group. Any task waiting
on the event group whose event flag request is satisfied by this service is resumed.

Overview

Option

Tasking Changes

Yes

Allowed From

Application_lnitialize, HISR, Signal Handler,
Task

Category Task Synchronization Services
Parameters
Parameter Meaning
group Pointer to the user-supplied event flag group control

block.

event _fl ags

Event flag values.

oper ati on

There are two operation options available: NU_OR and
NU_AND. NU_OR causes the event flags specified to be
“Ored” with the current event flags in the group. NU_AND
causes the event flags specified to be “ANDed” with the
current event flags in the group. NOTE: Event flags can
be cleared with the NU_AND option.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_| NVALI D_GROUP

Indicates the event flag group pointer is invalid.

NU_I NVALI D_OPERATI ON

Indicates the operation parameter is invalid.

181

Nucleus PLUS Reference Manual

Example

NU_EVENT_GROUP G oup;
STATUS st at us;

}* Set event flags 7, 2, and 1 in the event group control

bl ock “Group”. Assume “Goup” has previously been

created with the Nucl eus PLUS NU Create_ Event_ G oup service call.*/
status = NU Set_Event s(&G oup, 0x00000086 NU OR);
/* If status is NU SUCCESS the event flags were set. */

See Also

NU Retrieve_Events, NU Event_ G oup_I nformation

182

Chapter 10 - Event Groups

Example Source Code

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

There are two possible events, which will be represented by the definitions of EVENT_1
and EVENT_2. The #define of WAl T_EVENTS will be used by the NU_Retri eve_Events
function call to suspend on both individual events.

#defi ne EVENT_1 0x00000001

#def i ne EVENT_2 0x00000002
#defi ne WAI T_EVENTS 0x00000003

We will use five different Nucleus PLUS structures in this example program. All
necessary memory will be allocated out of the dynamic memory pool, dm_memory. There
are also three NU_TASK structures which will be used for the three tasks in the system. One
task (task wait) will be of a higher priority, and will suspend on the NU_EVENT_GROUP,
eg_wait. The remaining two tasks, t ask_set 1, and t ask_set 2 will set the above defined
events, EVENT_1 and EVENT_2. When both of these bits are set t ask_wait will be
resumed.

NU_MEMORY_POOL dm nenory;

NU TASK task_wait;

NU TASK t ask_set 1;

NU_TASK t ask_set 2;

NU_EVENT_GROUP eg_wai t;

Three void pointers will be used in this example. Each void pointer will hold a pointer to a
separate task stack. Although not demonstrated in this program, these pointers could be
used at a later time in the program to deallocate the task stacks, or they could be discarded
if the task stacks will never be deallocated.

VO D *stack_wait;

VA D *stack_set 1;
VA D *stack_set 2;

Declare the task entry point function for each of the three tasks. These will later be passed
as a parameter to the NU_Cr eat e_Task call which will assocaiate these functions with
each of their respective tasks.

voi d wai t (UNSI GNED argc, VO D *argv);

voi d set 1(UNSI GNED argc, VO D *argv);
voi d set2(UNSI GNED argc, VA D *argv);

Application_lnitialize will be used to create the dynamic memory pool, out of
which memory will be allocated for the three tasks in the system.
Application_lnitialize will also be used to create the event group, create the three
tasks, and associate each of the tasks with a newly created task stack.

VO D Application_lnitialize(VOD *first_avail abl e_nmenory)

183

Nucleus PLUS Reference Manual

Create the dynamic memory pool, and assocate it with the dm_memory control block. The
memory pool will be 10240 bytes large, will start at fi rst _avai | abl e_nenory, and, if
memory is unavailable, tasks that choose to suspend on this memory pool will be resumed
in First-In-First-Out order. The minimum allocation from this pool will be 128 bytes. For
more information on the NU_Cr eat e_Menory_Pool call, or dynamic memory pools in
general, see Chapter 4.

NU_Cr eat e_Menory_Pool (&Im nenory, "sysneni, first_avail abl e_nenory,
10240, 128, NU_FIFO;

For each task in the system, allocate 1024 bytes of memory for their respective stacks.
With the NU_Al | ocat e_Menory call, we are allocating a 1024 byte block of memory out
of the dm nenory dynamic memory pool. A pointer to the newly allocated memory is
assigned to stack_wait, stack_setl, and stack_set 2 respectively. The pointer to
this memory allocation is passed to the NU Create_Task call, which will use this
memory as it’s task stack.

NU_Al | ocat e_Menory(&Im nenory, &stack wait, 1024, NU_NO _SUSPEND) ;

NU Create_ Task(& ask_wait, "WAIT*, wait, 0, NU NULL, stack_wait,
1024, 3, 0, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_setl, 1024, NU_NO _SUSPEND) ;
NU_Creat e_Task(&t ask_set1, "SET1", setl, 0, NU NULL, stack_setl,
1024, 4, 0, NU_PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_set2, 1024, NU_NO _SUSPEND) ;
NU_Creat e_Task(&t ask_set2, "SET2", set2, 0, NU NULL, stack_set2,
1024, 4, 0, NU_PREEMPT, NU_START);

Use NU_Cr eat e_Event _Gr oup to create an event group with the text name of “WAIT.”
The tasks task_wait, task_setl, and task_set2 will use this event group to
synchronize their activity.

NU Create_Event _Goup(&sg_wait, "WAIT");

}

The function wait is the entry point for the task wait task. The task wait task will suspend
on the eg_wai t event group until both EVENT_1 and EVENT_2 are set by the t ask_set 1
and t ask_set 2 tasks.

voi d wait (UNSI GNED argc, VA D *argv)
{

The variable retrieved will be passed as a parameter to NU_Retri eve_Events. Upon
successful completion of that service call, it will contain the events that were actually
retrieved. The value of this variable can then be used in a construct such as a case
statement to perform different actions based upon which signal (represented by distict bit
patterns) was actually sent.

UNSI GNED retrieved;

184

Chapter 10 - Event Groups

Use the NU_Ret ri eve_Event s service call to suspend until all events are set. Since this
is the highest priority task in the system (see the NU_Cr eat e_Task service calls in the
Application_lnitialize function) it will be run first. Therefore, the t ask_wai t task
will suspend until the bits specified in WAl T_EVENTS are set.

The NU_Retrieve_Events service call will suspend, the result of the NU_SUSPEND
parameter, on the eg_wai t event group waiting for all bits in WAI T_EVENTS to be set.
This behavior could also be modified by changing the NU_AND parameter to NU_OR, which
would cause the NU_Ret ri eve_Event s service call to suspend until any of the specified
events were set. Consuming, or clearing, of event bits is also available by using the
NU_AND_CONSUME, and NU_OR_CONSUNVE options.

if (NU Retrieve Events(&eg_wait, WAIT_EVENTS, NU AND, &retrieved,
NU_SUSPEND) == NU_SUCCESS)

/* The requested events were successfully retrieved. */

}
}

The t ask_set 1 and t ask_set 2 tasks will both set a separate bit in the eg_wai t event
group. When these tasks are run, t ask_wai t has already run and has suspended on the
eg_wai t event group. Since these two tasks are the only two remaining tasks in the
system, and are of the same priority, they will be run consecutively and will each set their
respective bits. After the second NU_Set _Events call is executed, t ask_wai t will be
immediately resumed to continue processing.

voi d set 1(UNSI GNED argc, VA D *argv)

NU_Set _Events(&eg_wait, EVENT_1, NU OR);
}

voi d set 2(UNSI GNED argc, VO D *argv)

NU Set _Events(&eg_wait, EVENT_2, NU OR);

185

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
Ics

Gra

186

Signals

Introduction
Function Reference

Example Source Code

187

Nucleus PLUS Reference Manual

Introduction

Signals are in some ways similar to event flags. However, there are significant differences
in operation. Event flag usage is synchronous by nature. The task does not recognize
event flags are present until the specific service request is made. Signals operate in an
asynchronous manner. When a signal is present, a special signal handling routine,
previously designated by the task, is executed when the task is resumed. Each task is
capable of handling 32 signals. Each signal is represented by a single bit.

Signal Handling Routine

The task’s signal-handling routine must be supplied before any signals are processed.
Processing inside a signal-handling routine has virtually the same constraints as a high-
level interrupt service routine. Basically, most Nucleus PLUS services are available,
provided self-suspension is avoided.

Enable Signal Handling
By default, tasks are created with all signals disabled. Individual signals may be enabled
and disabled dynamically by each task.

Clearing Signals

Signals are automatically cleared when signal handling is invoked. Additionally, signals
are cleared when a solicited request to receive signals is made.

& NOTE: Tasks cannot suspend on solicited requests to receive signals.

Multiple Signals

Signals for a task are cleared once the signal-handling routine is started. Signal-handling
routines are not interrupted by new signals. Processing of any new signals takes place
after the current signal-processing completes. Identical signals sent before the first signal
is recognized are discarded.

Determinism

Processing time required to send and receive signals is constant, at least in the worst case.
Of course the time required to execute a signal-handling routine is application specific.

188

Chapter 11- Signals

Function Reference

The following function reference contains all functions related to Nucleus PLUS signals.
The following functions are contained in this reference:

NU_Control _Si gnal s
NU_Recei ve_Si gnal s

NU_Regi st er _Si gnal _Handl er
NU_Send_Si gnal s

NU Control _Signals
UNSI GNED NU_Cont r ol _Si gnal s(UNSI GNED enabl e_si gnal _mask)

This service enables and/or disables signals of the calling task. There are 32 signals
available for each task. Each signal is represented by a bit in si gnal _enabl e_mask.
Signal 0 is represented by bit 0 and signal 31 is represented by bit 31. Setting a bit in
si gnal _enabl e_mask enables the corresponding signal, while clearing a bit disables the
corresponding signal.

& NOTE: The signal enable mask is cleared during task creation.

Overview

Option

Tasking Changes No

Allowed From Task

Category Task Synchronization Services
Parameters

Parameter Meaning

enabl e_si gnal _mask Bit pattern representing valid signals.

Return Value

This service returns the previous signal enable/disable mask.

189

Nucleus PLUS Reference Manual

Example

UNSI GNED ol d_si gnal _mask; /* Previous signal mask */
/* Lockout all of the current task’s signals tenporarily. */
ol d_signal _mask = NU _Control _Signal s(0);

/* Restore previous signal mask. */
NU_Cont r ol _Si gnal s(ol d_si gnal _mask) ;

See Also
NU_Send_Si gnal s, NU_Recei ve_Signals, NU Register_Signal _Handl er

NU_Recei ve_Signal s
UNSI GNED NU_Recei ve_Si gnal s(VO D)

This service returns the current value of each signal associated with the calling task. All
signals are automatically cleared as a result of the service call.

Overview

Option
Tasking Changes No

Allowed From Task

Category Task Synchronization Services

Parameters

None

Return Value

This service call returns the current value of each signal associated with the calling task.

Example

UNSI GNED si gnal s;
/* Receive and clear the signals of the current task. */
signals = NU_Receive_Signal s();

See Also
NU_Control _Si gnals, NU Regi ster_Signal _Handl er, NU Send_Signals

190

Chapter 11- Signals

NU_Regi st er _Si gnal _Handl er
STATUS NU_Regi st er _Si gnal _Handl er (VO D(*si gnal _handl er) (UNSI GNED))

This service registers a signal handler pointed to by si gnal _handl er, for the calling
task. By default, all signals are disabled when the task is created. Signals remain disabled,
regardless of NU_Control _Si gnal s service requests, until a signal handler is registered
for the task. A signal handler executes on top of the task’s context. Most services can be
called from a signal handler. However, services called from a signal handler cannot
specify suspension.

Overview
Option
Tasking Changes No
Allowed From Task
Category Task Synchronization Services
Parameters
Parameter Meaning
si gnal _handl er Function to called whenever valid signals are received.

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TASK Indicates the supplied task pointer is invalid.

NU_I NVALI D_PQ NTER | Indicates the signal handler pointer is NULL.

191

Nucleus PLUS Reference Manual

Example
STATUS st at us;

/* Register the function “Signal _Handler” as the task’s
signal handler. */

void Signal _Handl er (UNSI GNED si gnal s)
/* Process relative to the singls present. Note that
processi ng has the sane constraints has H SRs in
that self-suspension is not permtted. */

}
status = NU _Regi ster_Si gnal _Handl er (Si gnal _Handl er);

/* If status is NU SUCCESS, Signal_Handler is invoked
each time enabled signals are sent. */

See Also
NU _Control _Signals, NU Receive_Signals, NU Send_Signals

192

Chapter 11- Signals

NU _Send_Si gnal s
STATUS NU_Send_Si gnal s(NU_TASK *task, UNSI GNED si gnal s)

This service sends the signals indicated by the parameter si gnal s to the task pointed to
by the parameter task. If the receiving task has any of the designated signals enabled, its
registered signal handler is executed as soon as the receiving task’s priority permits. Each
task has 32 available signals that are represented by each bit in si gnal s.

There are several conditions that prevent the receiving task’s signal handler from being
executed, as follows:

= Receiving task is in a finished or terminated state.

= Receiving task is unconditionally suspended (either it was not started after creation
or it was suspended by NU_Suspend_Task). If this is the case, the signal handler
does not execute until the task is resumed.

= There is always a task ready at a higher priority than the receiving task.
= The receiving task has not enabled the signals sent.

= The receiving task has not registered a signal handler.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Task Synchronization Services
Parameters
Parameter Meaning
t ask Pointer to the user-supplied task control block.
signal s Bit pattern representing signals to be sent.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TASK | Indicates the task pointer is invalid.

193

Nucleus PLUS Reference Manual

Example

NU_TASK Task;
STATUS st at us;

/* Send signals 1, 7, and 31 to the task control bl ock
“Task”. Notice that the signals correspond to the bit
posi tion. Assume “Task” has previously been created
with the Nucleus PLUS NU Create_Task service call. */

status = NU Send_Si gnal s(&Task, 0x80000082);

See Also

NU_Recei ve_Si gnal s, NU Control _Signals, NU Register_Signal _Handl er

194

Chapter 11- Signals

Example Source Code

In this example we will look at how Nucleus PLUS signals could be used to implement a
control task which will perform various system tasks. Specific to this example, a task will
signal that it can now be deleted, and removed from the system.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

In this demonstration, a task, specifically t ask_1 will send a signal to the control task,
task_control , when it has finished processing. The task control task will then delete the
task, and deallocate the memory used for it’s stack. The #def i ne TASK_1_FI NI SHED will
be used to represent this signal.

#defi ne TASK_1_FI NI SHED 0x00000001

Three Nucleus PLUS structures will be used in this example. The dynamic memory pool
control block, dm nenory, will be used as the memory pool out of which all memory will
be allocated. The two NU_TASK structures are the task control blocks for the two tasks in
the system: t ask_control ,and t ask_1.

NU_MEMORY_POOL dm nenory;

NU_TASK t ask_control ;
NU _TASK task_1;

Two void pointers will be used in this example. Each void pointer will hold a pointer to a
separate task stack. The void pointer, st ack_t ask_1 will be used in this example to
deallocate the memory associated with the t ask_1 stack.

VA D *stack_control ;
VO D *stack_task_1;

Declare the task entry point function for each of the three tasks. These will later be passed
as a parameter to the NU_Cr eat e_Task call which will assocaiate these functions with
each of their respective tasks.

voi d control (UNSI GNED argc, VO D *argv);

void entry_1(UNSI GNED argc, VA D *argv);
voi d sh_control (UNSI GNED si gnal s) ;

Application_Initialize will be used to create the dynamic memory pool, out of
which memory will be allocated for the two tasks in the system, which will then be created
with the NU_Cr eat e_Task service call. After Application_lnitialize executes, all
tasks will be created, and the system will be ready to begin executing in a multi-tasking
environment.

VO D Application_Initialize(VOD *first_avail abl e_nmenory)

195

Nucleus PLUS Reference Manual

Create the dynamic memory pool, and assocate it with the dm menory control block. The
memory pool will be 10240 bytes large, will start at fi r st _avai | abl e_nenory, and, if
memory is unavailable, tasks that choose to suspend will be resumed in First-In-First-Out
order. The minimum allocation from this pool will be 256 bytes. For more information on
the NU_Cr eat e_Menory_Pool call, or dynamic memory pools in general, see Chapter 4.

NU_Create_Menory_Pool (&Im menory, "sysment, first_avail abl e_nmenory,
10240, 256, NU FI FO;

For each task in the system, allocate 1024 bytes of memory for their respective stacks.
With the NU_Al | ocat e_Menory call, we are allocating a 1024 byte block of memory out
of the dm menory dynamic memory pool. A pointer to the newly allocated memory is
assigned to stack_control, and stack_task_1 respectively. The pointer to this
memory allocation is passed to the NU_Cr eat e_Task call, which will use this memory as
the task stack.

NU_Al | ocat e_Menory(&Im menory, &stack_control, 1024, NU_NO_SUSPEND) ;

NU_Creat e_Task(&t ask_control, "CONTROL", control, 0, NU NULL,
stack_control, 1024, 11, 0, NU PREEMPT, NU_START);

NU_Al | ocat e_Menory(&Im nenory, &stack_task_1, 1024, NU_NO_SUSPEND) ;
NU _Creat e_Task(&t ask_1, "TASK1", entry_1, 0, NU NULL, stack_task_1,
1024, 10, 0, NU _PREEMPT, NU_START);

}

In order for a Nucleus PLUS task to receive signals, first, a signal hander must me
associated with that task. The task_control task is used register and control the
sh_control signal handler. In a complete system, this task could also be used to run
periodic system maintenance that did not depend on a signal being issued.

voi d control (UNSI GNED argc, VO D *argv)
{

The NU_Regi st er _Si gnal _Handl er service call associates a signal handling function
with a specific task. After this call, upon a signal being sent to this task, the associated
signal handler function will be executed. The associated function will be responsible for
determining which signal was sent, and to take the correct action.

NU_Regi st er _Si gnal _Handl er (&sh_control);
The task also needs to be informed of which signals in the system it should respond to. The

NU_Cont r ol _Si gnal s service call will set the required flags so that the signal handler
function is only executed when valid signals are sent.

NU_Cont rol _Si gnal s(TASK_1_FI NI SHED) ;
For this demonstration, if this task is ever executed, sleep for 10 timer ticks. In a real

system, code could be inserted to do periodic maintenance regardles off whether a signal
was sent to this task.

whi | e(1)

{

NU_SI eep(10);
}

}

196

Chapter 11- Signals

The sh_control function is the signal handler that was associated with the
task_control task. It is responsible for examining the current set of signals, evaluating
what action to take, and then executing the correct code to handle that particular signal (or
set of signals). Specific to this example, the signal handler will determine if
TASK_1_FI NI SHED was sent, and if so, delete the task, and deallocate the memory used
for it’s task stack.

voi d sh_control (UNSI GNED si gnal s)
{

First determine if TASK 1_FI NI SHED was actually sent to the control task. If
TASK _1_FI NI SHED was sent, then delete the task with a call to NU_Del et e_Task, and
deallocate the memory for the task’s stack with a call to NU_Deal | ocat e_Menory.

if (signals & TASK 1_FI NI SHED)

{
NU Del et e_Task(& ask_1);
NU _Deal | ocat e_Menory(&stack_task_1);

}
Use NU_Recei ve_Si gnal s to clear the current set of signals.

NU_Recei ve_Si gnal s();
}

In this demonstration, t ask_1 is used to send a signal to the control task indicating that it
has completed processing, and can now be removed from the system. Therefore, entry_1,
the entry point for task_1, issues a call with NU Send_Signals to send the
TASK_1_FI NI SHED signal to t ask_control .

void entry_1(UNSI GNED argc, VO D *argv)

NU_Send_Si gnal s(&t ask_control, TASK 1_FI NI SHED) ;

197

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
Ics

Gra

198

Introduction
Function Reference

Example Source Code

199

Nucleus PLUS Reference Manual

Introduction

Most real-time applications require processing on periodic intervals of time. Each Nucleus
PLUS task has a built-in timer. This timer is used to provide task sleeping and service call
suspension timeouts.

Ticks

A tick is the basic unit of time for all Nucleus PLUS timer facilities. Each tick
corresponds to a single hardware timer interrupt. The amount of actual time a tick
represents is usually user-programmable.

Margin of Error

A timer request may be satisfied as much as one tick early in actual time. This is because
a tick can occur immediately after the timer request. Therefore, the first tick of a timer
request represents an actual time ranging from zero to the rate of the hardware timer
interrupt. For example, the amount of actual time expired for a request of n ticks falls
between the actual time n and n-1 ticks represent.

Hardware Requirement

Nucleus PLUS timer services require a periodic timer interrupt from the hardware.
Without such an interrupt, timer facilities will not function. However, other Nucleus
PLUS facilities are not affected by the absence of timer facilities.

Continuous Clock

Nucleus PLUS maintains a continuous counting tick clock. The maximum value of this
clock is 4,294,967,294. The clock automatically resets on the tick after the maximum
value is reached.

This continuous clock is reserved exclusively for application use. It may be read from and
written to by the application at any time.
Task Timers

Each task has a built-in timer. This timer is used for task-sleep requests and suspension
timeout requests. Additionally, a time-slice timer is available for tasks that require time-
slicing.

200

Chapter 12 - Timers

Application Timers

Nucleus PLUS provides programmable timers for applications. These timers execute a
specific user-supplied routine when they expire. The user-supplied expiration routine
executes as a high-level interrupt service routine. Therefore, self-suspension requests are
not allowed. Additionally, processing should be kept to a minimum.

Re-Scheduling

When a timer expires, the prescribed expiration routine is executed. After execution is
complete, the timer is either dormant or rescheduled. If the timer’s reschedule value is
zero, it is dormant after the initial expiration. However, if the timer’s reschedule value is
nonzero, it is rescheduled to expire at that interval.

Enable/Disable

Application timers may be automatically enabled during creation. Additionally, timers
may be enabled and disabled dynamically.

Reset

The initial ticks, rescheduling rate, and the expiration routine of a timer may be reset
dynamically by the application.

Dynamic Creation

Nucleus PLUS application timers are created and deleted dynamically. There is no preset
limit on the number of timers an application may have. Each timer requires a control
block. The memory for this is supplied by the application.

Determinism

Processing time required to create, enable, disable, and modify application timers is
constant. However, processing time required to execute the user-supplied expiration
routines depends on the expiration routines themselves and the number of timers that
expire simultaneously.

201

Nucleus PLUS Reference Manual

Timer Information

Application tasks may obtain a list of active timers. Detailed information about each timer
is also available. This information includes the timer name, status, initial ticks, reschedule
value, remaining ticks, and the expiration count.

Function Reference

The following function reference contains all functions related to Nucleus PLUS timers.
The following functions are contained in this reference:

NU_Cont rol _Ti mer
NU_Creat e_Ti ner

NU_Del et e_Ti ner

NU_Est abl i shed_Ti ners
NU_Get Rermai ni ng_Ti me
NU_Reset _Ti mer
NU_Retrieve_C ock
NU_Set _d ock

NU_Ti mer _I nf or mat i on
NU_Ti mer _Poi nters

202

Chapter 12 - Timers

NU Control Timer
STATUS NU_Control _Tiner (NU_TIMER *tiner, OPTION enabl e)

This service enables or disables the application timer pointed to by ti mer. Legal values
for the enabl e parameter are NU_ENABLE_TI MER and NU_DI SABLE_TI MER.

Overview
Option
Tasking Changes No
Allowed From Application_|Initialize, HISR, Signal Handler, task
Category Timer Services
Parameters
Parameter Meaning
timer Pointer to the user-supplied timer control block.
enabl e Valid options for this parameter are NU_ENABLE_TI MER

and NU_DI SABLE_TI MER. NU_ENABLE_TI MER
immediately after the function call. NU_DI SABLE_TI MER
leaves the timer disabled.

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TI MER Indicates the timer pointer is invalid.

NU_I NVALI D_ENABLE Indicates the enable parameter is invalid.

Example

NU_TI MER Ti ner;
STATUS st at us

/* Disable the timer control block “Timer”. Assume
“Timer” has previously been created with the
Nucl eus PLUS NU Create Tiner service call. */
status = NU_Control _Ti mer (&Ti mer, NU_DI SABLE_TI MER) ;

/* At this point, status can be exami ned to deternine
whet her the service request was successful . */

See Also

NU Create_Timer, NU Reset_Tiner, NU_Tinmer_Information

203

Nucleus PLUS Reference Manual

NU Create Tiner

STATUS NU Create_Timer (NU_TI MER *timer, CHAR *nane,

VO D (*expiration_routine)(UNSI GNED),
UNSI GNED id, UNSIGNED initial _tine,
UNSI GNED reschedul e_ti e,

OPTI ON enabl e)

This service creates an application timer. The specified expiration routine is executed each

time the timer expires.

Application expiration routines should avoid task suspension

options. Suspension of the expiration routine can cause delays in other application timer

requests.
Overview
Option
Tasking Changes No
Allowed From Application_|nitialize, HISR, Signal Handler, task
Category Timer Services
Parameters
Parameter Meaning
timer Pointer to the user-supplied timer control block. NOTE:
All subsequent requests made to the timer require this
pointer.
name Pointer to an 8-character name for the timer. The name

does not have to be null-terminated.

expiration_routine

Specifies the application routine to execute when the timer
expires.

id

An UNSI GNED data element supplied to the expiration
routine. The parameter may be used to help identify timers
that use the same expiration routine.

initial _time

Specifies the initial number of timer ticks for timer
expiration. A value of zero will return an error if error
checking is enabled.

reschedul e_tine

Specifies the number of timer ticks for expiration after the
first expiration. If this parameter is zero, the timer only
expires once.

enabl e

Valid options for this parameter are NU_ENABLE_TI MER
and NU_DI SABLE_TI MER. NU_ENABLE_TI MER activates
the timer after it is created. NU_DI SABLE_TI MER leaves
the timer disabled. Timers created with the

NU_DI SABLE_TI MER must be enabled by a call to
NU_Control _Ti ner later.

204

Chapter 12 - Timers

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TI MER Indicates the timer control block pointer is NULL or is

already in use.

NU_I'NVALI D_FUNCTI ON | Indicates the expiration function pointer is NULL.
NU_I NVALI D_ENABLE Indicates the enabl e parameter is invalid.

NU_I NVALI D_OPERATI ON | Indicates the pause made with an initian time of zero.

Example

/* Assunme timer control block “Tinmer” is defined as a
gl obal data structure. This is one of several ways
to allocate a control block. */

NU_TI MER Ti ner;

/* Assume status is defined locally. */
STATUS status; /* Tinmer creation status */

/* Create a tinmer that has an expiration function “tiner_expire”,
an ID of O, an initial expiration of 23 tiner ticks. After
the initial expiration, the timer expires every 5 tinmer ticks.
Note that the tinmer is enabled during creation. */
status = NU Create_Ti ner (&Ti mer, “any nanme”, tiner_expire,

0, 23, 5, NU_ENABLE TI MER);

/* At this point status indicates if the service was successful. */

See Also

NU Del ete_Timer, NU Established_Tinmers, NU_Tiner_Pointers,
NU_Ti mer _I nformati on, NU_Reset _Ti ner

205

Nucleus PLUS Reference Manual

NU Del et e Ti ner

STATUS NU Del ete_Ti mer (NU_TI MER *ti ner)

This service deletes a previously created application timer. The parameter ti mer

identifies the timer to delete.

NOTE: The specified timer must be disabled prior to this service request.
application must prevent the use of this timer during and after deletion.

The

Overview
Option
Tasking Changes No
Allowed From Application_|lnitialize, HISR, Signal Handler, task
Category Timer Services
Parameters
Parameter Meaning
timer Pointer to the user-supplied timer control block.

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_TI MER | Indicates the timer pointer is invalid.

NU_NOT_DI SABLED Indicates the specified timer is not disabled.

206

Chapter 12 - Timers

Example

NU_TI MER Ti ner;
STATUS st at us

/* Delete the timer control block “Timer”. Assume “Timer”
has previously been created with the Nucl eus PLUS
NU Create_Ti mer service call. */

status = NU Del ete_Ti ner (&Tinmer);

/* At this point, status indicates whether the service
request was successful. */

See Also

NU Create_Tinmer, NU Established_Tinmers, NU_Tinmer_Pointers,
NU_Ti mer _I nformati on, NU_Reset _Ti mer

207

Nucleus PLUS Reference Manual

NU Est abl i shed Ti nmers
UNSI GNED NU_Est abl i shed_Ti mer s(VA D)

This service returns the number of established timers. All created timers are considered
established. Deleted timers are no longer considered established.

Overview

Option
Tasking Changes | No

Allowed From Application_|lnitialize, HISR, Signal Handler, task
Category Timer Services

Parameters

None

Return Value

This service returns the number of established timers.

Example
UNSI GNED total _tiners;

/* obtain the total nunber of tiners. */
total _timers = NU_Established_Tiners();

See Also

NU Create_Timer, NU Delete_Tiner, NU_Tinmer_Pointers,
NU_Ti mer _I nformati on, NU_Reset Ti ner

208

Chapter 12 - Timers

NU Get _Renmai ni ng_Ti me

STATUS NU_Get _Rermi ning_Time (NU_TIMER *tiner, UNSI GNED
*remaini ng_tine)

This service retrieves the remaining time before the expiration of the specified timer .

Overview
Option
Tasking Changes No
Allowed From HISR, Signal Handler, task.
Category Timer Services
Parameters
Parameter Meaning
timer Pointer to the user-supplied timer control block.
remai ning_tine Contains the number of clock ticks until the timer expires.

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I' NVALI D_TI MER Indicates the timer pointer is invalid.
Example

NU_TI MER Ti ner;
UNSI GNED tine_|eft;
STATUS st at us;

/* Assume “Timer” has previously been created with the
Nucl eus PLUS NU Create Tiner service call. */

status = NU Get _Remai ning_Ti me(&Timer, &ine_left);
/* At this point, status can be examined to deternine
whet her the service request was successful. If so,
time_left holds the tick value until Tinmer expires. */
See Also
NU Create_Timer, NU Delete_Tiner, NU Control _Tiner,
NU_Ti mer _I nf ormati on.

209

Nucleus PLUS Reference Manual

NU Reset Ti ner

STATUS NU_Reset Ti mer (NU_TI MER *ti ner,

VO D (*expiration_routine)(UNSI GNED),

UNSI GNED initial _tinme,
UNSI GNED r eschedul e_ti ne,

OPTI ON enabl e)

This service resets the specified timer with new operating parameters.

& NOTE: The timer must be disabled before this service is called.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler,
task
Category Timer Services
Parameters
Parameter Meaning
timer Pointer to the timer.

expiration_routine

Specifies the application routine to execute when the
timer expires.

initial _time

Specifies the initial number of timer ticks for timer
expiration. A value of zero will return an error if error
checking is enabled.

reschedul e_tine

Specifies the number of timer ticks for expiration after
the first expiration. If this parameter is zero, the timer
only expires once.

enabl e

Valid options for this parameter are NU_ENABLE_TI MER
and NU_DI SABLE_TI MER. NU_ENABLE_TI MER
activates the timer immediately after it is reset.

NU_DI SABLE_TI MER leaves the timer disabled. Timers
reset with NU_DI SABLE_TI MER must be enabled by a
callto NU Control _Ti ner ata later time.

210

Chapter 12 - Timers

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D_TI MER Indicates the timer control block pointer is invalid.

NU_I NVALI D_FUNCTI ON Indicates the expiration function pointer is NULL.

NU_I NVALI D_ENABLE Indicates the enable parameter is invalid.

NU_NOT_DI SABLED Indicates the timer is currently enabled. It must be
disabled before it can be reset.

Example

NU_TI MER Ti ner;
STATUS st at us

/* Reset the timer control block “Tinmer” to expire initially
after 3 tiner ticks and then expire every 30 tinmer ticks.
Al so, the new expiration routine is “new_expire”
Autormatically enable the tinmer after it is reset. Assune
“Timer” has previously been created with the Nucl eus PLUS
NU Create_Ti mer service call. */
status = NU Reset _Ti ner (&Ti mer, new_expire, 3, 30, NU ENABLE Tl MER);

/* Contents of status indicates whether or not the
service was successful. */

See Also

NU Create_Timer, NU Delete_Tiner, NU Control _Tiner,
NU_Ti mer _I nformati on

211

Nucleus PLUS Reference Manual

NU Retrieve_ C ock
UNSI GNED NU_Retri eve_d ock(VA D)

This service returns the current value of the continuously incrementing timer tick counter.
The counter increments once for every timer interrupt.

Overview

Option

Tasking Changes No

Allowed From Application_lnitialize, HISR, LISR, Signal Handler, task

Category Timer Services

Parameters

None

Return Value

This service call returns the current value of the system clock.

Example
UNSI GNED cl ock_val ue;

/* Read the current value of the systemtick cl ock. */
cl ock_val ue = NU Retrieve_C ock();

See Also
NU_Set d ock

212

Chapter 12 - Timers

NU Set d ock
VO D NU_Set _C ock(UNSI GNED new_val ue)

This service sets the continuously counting system clock to the value specified by
new_val ue.

Overview
Option
Tasking Changes No
Allowed From Application_|lnitialize, HISR, Signal Handler, task
Category Timer Services
Parameters
Parameter Meaning
new_val ue The new value for the system clock.

Return Value

None

Example

/* Set the systemclock to 0. */
NU_Set _C ock(0);

See Also
NU _Retrieve_C ock

213

Nucleus PLUS Reference Manual

NU Ti mer I nformation

STATUS NU_Ti mer _I nformati on(NU_TI MER *ti ner,

CHAR *name, OPTI ON *enabl e,

UNSI GNED *expi rations, UNSI GNED *i d,
UNSI GNED *initial _tinme,

UNSI GNED *reschedul e_ti ne)

This service returns various information about the specified application timer.

Overview
Option
Tasking Changes No
Allowed From Application_|Initialize, HISR, Signal Handler, task
Category Timer Services
Parameters
Parameter Meaning
timer Pointer to the application timer.
nane Pointer to an 8-character destination area for the timer’s
name.
enabl e Pointer to a variable to hold the timer’s current enable state,

either NU_ENABLE_TI MER or NU_DI SABLE_TI MER.

expi rations

Pointer to a variable to hold the number of times the timer
has expired.

id

Pointer to a variable to hold the user-supplied id.

initial _time

Pointer to a variable to hold the initial timer expiration value.

reschedul e_tine

Pointer to a variable to hold the timer’s reschedule value.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_TI VER

Indicates the timer pointer is invalid.

214

Chapter 12 - Timers

Example
NU_TI MER Ti mer ;
CHAR ti mer _nane[8] ;
OPTI ON enabl e;
UNSI GNED expirations;
UNSI GNED id;
UNSI GNED initial _tine;
UNSI GNED reschedul e_ti ne;
STATUS st at us;

/* Obtain informati on about the tiner control block "Timer".

Assunme "Tinmer" has previously been created with the

Nucl eus PLUS NU Create Tiner service call. */

status = NU_Timer _|Informati on(&Ti mer, timer_nanme, &enabl e,
&expiration, & d, & nitial _tine,
& eschedul e_tine);

/* If status is NU SUCCESS, the other information is accurate. */

See Also

NU Create_Timer, NU Delete_Tiner, NU_Established_Timers,
NU_Ti mer _Poi nters, NU_Reset Tiner

215

Nucleus PLUS Reference Manual

NU_Ti mer _Poi nters

UNSI GNED NU_Ti ner _Poi nters(NU_TI MER **poi nter_li st,

UNSI GNED maxi mum _poi nt ers)

This service builds a sequential list of pointers to all established application timers in the
system.

NOTE: timers that have been deleted are no longer considered established. The
& parameter poi nter_list points to the location for building the list of pointers,
while maxi mum poi nt ers indicates the maximum size of the list. This service
returns the actual number of pointers in the list. Additionally, the list is ordered

from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, HISR, Signal Handler, task
Category Timer Services
Parameters
Parameter Meaning
poi nter_list Pointer to an array of NU_TI MER pointers. This array will be
filled with pointers of established timers in the system.
Maxi mum poi nters | The maximum number of NU_TI MER pointers to place into the
array. Typically this will be the size of the poi nter _I i st
array.

Return Value

This service call returns the number of timers that are active in the system.

Example

/* Define an array capable of holding 20 timer pointers. */
NU_TI MER * Poi nt er _Array[20] ;
UNSI GNED nunber ;

/* Cpbtain a list of currently active timer pointers
(Maxi mum of 20). */
nunber = NU_Ti ner _Poi nt er s(&Poi nter_Array[0], 20);

/* At this point, number contains the actual number
of pointers in the list. */

See Also

NU Create_Tinmer, NU Delete_Tiner, NU_Established_Timers,
NU_Ti mer _I nformati on, NU_Reset _Ti ner

216

Chapter 12 - Timers

Example Source Code

The following example program demonstrates how a Nucleus PLUS timer could be used to
execute code on a periodic basis. The following Nucleus PLUS program contains a single
timer that expires every five timer ticks.

Include all necessary Nucleus PLUS include files.

#i ncl ude "nucl eus. h"

A single Nucleus PLUS structure is required for this demonstration. The timer control
block, NU TI MER, will be associated with a timer expiration routine using the
NU_Cr eat e_Ti nmer service call.

NU_TI MER ti ner _deno;

The function expi ration_routine will serve as the timer experation routine for the
ti mer _deno timer. The only parameter necessary for a timer expiration routine is a single
UNSI GNED which will contain the timer id for which this timer was associated with in the
NU_Cr eat e_Ti mer service call. As an example, this id could be used to allow the same
expiration routine to be used for multiple timers.

voi d expiration_routine(UNSI GNED id);

In this demonstration, the Appl i cati on_I ni ti al i ze function will be used to create the
single Nucleus PLUS timer. After Appl i cation_I niti alize executes, all tasks will be
created, and the system will be ready to begin executing in a multi-tasking environment.

VO D Application_Initialize(VOD *first_avail abl e_nmenory)

Create the Nucleus PLUS timer with the NU_Create_Ti mer service call. The timer,
ti mer _deno will be named “TIMER”, and will be associated with the timer expiration
routine, expi rati on_r out i ne. The timer will be given the id of 1, will expire five timer
ticks after processing begins, and will expire every five timer ticks therafter. The
NU_ENABLE_TI MER parameter specifies that this timer should be immediately enabled.
The parameter NU_DI SABLE_TI MER could also be used, which would require that the
function NU_Cont r ol _Ti mer was issued later to being timer processing. The use of this
method would allow for timers to be enabled and disabled based upon the current status of
the system. Similarly, NU Reset _Ti mer could also be used to later modify the
functionality of the timer.

NU Create Tiner(&inmer_deno, "TIMER', expiration_routine, 1, 5, 5,
NU_ENABLE_TI MER) ;

}

The function expi rati on_routine is the function that will be executed whenever the
ti mer_denp expires. This function will be associated with ti mer_deno using the
NU_Cr eat e_Ti nmer service call.

voi d expiration_routine(UNSI GNED i d)

{
}

217

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

218

Interrupts

Introduction
Function Reference
Managed ISRs

Unmanaged ISRs

219

Nucleus PLUS Reference Manual

Introduction

An interrupt is a mechanism for providing immediate response to an external or internal
event. When an interrupt occurs, the processor suspends the current path of execution and
transfers control to the appropriate Interrupt Service Routine (ISR). The exact operation of
an interrupt is inherently processor-specific.

Nucleus PLUS supports both managed and unmanaged ISRs. A managed ISR is one that
does not need to save and restore context, while an unmanaged ISR is fully responsible for
saving and restoring any registers used. Managed ISRs may be written in C or assembly
language. However, unmanaged ISRs are almost always written in assembly language.

Protection

Interrupts pose interesting problems for all real-time kernels. Nucleus PLUS is no
exception. The main problem stems from the fact that ISRs need to have access to
Nucleus PLUS services. On the surface this may not seem like a problem; however, it
requires protection of data structures manipulated during a service call from simultaneous
access by an ISR. The simplest method of protection is to lock out interrupts for the
duration of the service.

Responding to interrupts quickly is a cornerstone of real-time systems. Therefore, locking
out interrupts to protect internal data structures is not desirable. Nucleus PLUS handles
this protection problem by dividing application ISRs into low and high-level components.

Low-Level ISR

The Low-Level Interrupt Service Routine (LISR) executes as a normal ISR, which
includes using the current stack. Nucleus PLUS saves context before calling an LISR and
restores context after the LISR returns. Therefore, LISRs may be written in C and may
call other C routines. However, there are only a few Nucleus PLUS services available to
an LISR. If the interrupt processing requires additional Nucleus PLUS services, a High-
Level Interrupt Service Routine (HISR) must be activated. Nucleus PLUS supports
nesting of multiple LISRs.

High-Level ISR

HISRs are created and deleted dynamically. Each HISR has its own stack space and its
own control block. The memory for each is supplied by the application. Of course, the
HISR must be created before it is activated by an LISR.

Since an HISR has its own stack and control block, it can be temporarily blocked if it tries
to access a Nucleus PLUS data structure that is already being accessed.

220

Chapter 13 - Interrupts

HISRs are allowed access to most Nucleus PLUS services, with the exception of self-
suspension services. Additionally, since an HISR cannot suspend on a Nucleus PLUS
service, the “suspend” parameter must always be set to NU_NO_SUSPEND.

There are three priority levels available to HISRs. If a higher priority HISR is activated
during processing of a lower priority HISR, the lower priority HISR is preempted in much
the same manner as a task gets preempted. HISRs of the same priority are executed in the
order in which they were originally activated. All activated HISRs are processed before
normal task scheduling is resumed.

An activation counter is maintained for each HISR. This counter is used to insure that
each HISR is executed once for each activation. Note that each additional activation of an
already active HISR is processed by successive calls to that HISR.

HISR Information

Application tasks may obtain a list of active HISRs. Detailed information about each
HISR is also available. This information includes the HISR name, total scheduled count,
priority, and stack parameters.

Interrupt Latency

Interrupt latency is a term that describes the amount of time for which interrupts are locked
out. Since Nucleus PLUS does not rely on locking out interrupts to protect against
simultaneous ISR access, interrupt latency is small and constant. In fact, interrupts are
only locked out over several instructions in some Nucleus PLUS ports.

Application Interrupt Lockout
Applications are provided with the ability to disable and enable interrupts. An interrupt
locked out by the application remains locked out until the application unlocks it.

Direct Vector Access

Nucleus PLUS provides the ability to directly set up interrupt vectors. ISRs loaded
directly into the vector table are required to save and restore registers used. Therefore,
ISRs entered directly into the vector table are often written in assembly language. Such
ISRs, providing certain conventions are followed, may activate a HISR.

221

Nucleus PLUS Reference Manual

Function Reference

The following function reference contains all functions related to Nucleus
interrupts. The following functions are contained in this reference:

222

NU_Acti vi ate_Hl SR

NU _Control _Interrupts
NU_Create_H SR
NU_Current _Hl SR _Poi nter
NU Del ete_H SR

NU_Est abl i shed_HI SRs
NU_HI SR | nf ormati on
NU_HI SR _Poi nters

NU Local _Control _Interrupts
NU_Regi ster _LI SR

NU_Set up_Vect or

PLUS

Chapter 13 - Interrupts

NU Activate H SR
STATUS NU_Activate_H SR (NU_HI SR *hi sr)

This service activates the HISR pointed to by hi sr. If the specified HISR is currently
executing, this activation request is not processed until the current execution is complete.
A HISR is executed once for each activation request.

Overview
Option
Tasking Changes No
Allowed From LISR, HISR, Task
Category Interrupt Services
Parameters
Parameter Meaning
hi sr Pointer to the user-supplied HISR control block.

Return Value
A return value of NU_SUCCESS indicates successful completion of this service.

Example

NU_HI SR Oper at or _| nput ;
STATUS st at us;

/* Activate the previously created operator input H SR
for which the control block is Operator_Input. */
status = NU_Acti vat e_H SR(&Oper at or _I nput) ;

See Also
NU Create_HI SR, NU Delete_H SR, NU HI SR I nformation

223

Nucleus PLUS Reference Manual

NU Control _Interrupts

I NT NU_Control _

Interrupts(INT new_ | evel)

This service enables or disables interrupts according to the value specified in

new_| evel .

Interrupts are disabled and enabled in a task-independent manner.

Therefore, an interrupt disabled by this service remains disabled until enabled by a
subsequent call to this service. Values of new_| evel are processor dependent.
However, the values NU_DI SABLE_| NTERRUPTS and NU_ENABLE_| NTERRUPTS may be
used to disable all interrupts and enable all interrupts, respectively.

Overview
Option
Tasking Changes No
Allowed From HISR, Signal Handler, Task
Category Interrupt Services
Parameters
Parameter Meaning
new_| evel New interrupt level for the system. The options

NU_DI SABLE_| NTERRUPTS (disable all interrupts) and
NU_ENABLE_I NTERRUPTS (enable all interrupts) are always
available. Other options may be available depending upon
architecture. See the target specific notes for more
information.

Return Value

This service returns the previous level of enabled interrupts.

Example

INT old_level;

/* Lockout all

old_|evel =

/* Adinterrupt level. */

interrupts tenporarily. */
NU_Control _I nterrupts(NU_D SABLE | NTERRUPTS) ;

/* Restore previous interrupt |ockout level. */
NU Control _Interrupts(ol d_|evel);

See Also

NU_Setup_Vector, NU Register_LISR NU Create_H SR, NU Del ete_H SR

224

Chapter 13 - Interrupts

NU Create H SR

STATUS NU Create_H SR(NU_HI SR *hi sr, CHAR *nane,
VO D (*hisr_entry)(vd D),
OPTION priority,
VO D *stack_pointer,
UNSI GNED st ack_si ze)

This service creates a High-Level Interrupt Service Routine (HISR). HISRs are allowed to
call most Nucleus PLUS services, unlike Low-Level Interrupt Service Routines (LISRs).

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler,
Task
Category Interrupt Services
Parameters
Parameter Meaning
hi sr Pointer to the user-supplied HISR control block.
NOTE: All subsequent requests made to this HISR
require this pointer.
name Pointer to an 8-character name for the HISR. The name
does not have to be null-terminated.
hisr_entry Specifies the function entry point of the HISR.
priority There are three HISR priorities (0-2). Priority O is the
highest.
stack_poi nter Pointer to the HISR’s stack area. Each HISR has its
own stack area. Note that the HISR stack is pre-
allocated by the caller.
stack_si ze Number of bytes in the HISR stack.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_HI SR Indicates the HISR control block pointer is NULL or is
already in use.
NU_I NVALI D_ENTRY Indicates the HISR entry pointer is NULL.
NU_I NVALI D_PRI ORI TY Indicates the HISR priority is invalid.
NU_I NVALI D_MEMORY Indicates the stack pointer is NULL.
NU_I NVALI D_SI ZE Indicates the stack size is too small.

225

Nucleus PLUS Reference Manual

Example

/* Assunme HI SR control block “H SR' is defined as a gl obal
data structure. This is one of several ways to allocate
a control block. */

NU_HI SR HI SR

/* Assume status is defined locally. */
STATUS status; /* H SR creation status */

/* Create an HISR Note that the HI SR entry function is

“H SR Entry” and the “stack_pointer” points to a previously

al | ocated bl ock of menory that contains 400 - bytes. */
status = NU Create_H SR(&H SR, “any nanme”, H SR Entry,
2, stack_pointer, 400);

/* status indicates if the service was successful. */

See Also

NU _Del ete_H SR, NU_Establi shed_H SRs, NU H SR Poi nters,

NU_HI SR I nfornati on

226

Chapter 13 - Interrupts

NU Current H SR Poi nt er
NU_HI SR *NU_Curr ent _H SR_Poi nt er (VO D)

This service returns the currently executing HISR’s pointer. If the caller is not an HISR,
the value returned is NU_NULL.

Overview

Option
Tasking Changes No

Allowed From HISR, LISR
Category Interrupt Services

Parameters

None

Return Value

This service call returns a pointer the currently executing HISR’s control block.

Example
NU_HI SR *HI SR ptr;

/* CGet the currently running H SR pointer. */
H SR ptr = NU Current_HI SR Pointer();

See Also
NU_Est abl i shed_H SRs, NU_HI SR Poi nters, NU H SR I nfornation

227

Nucleus PLUS Reference Manual

NU Del et e H SR
STATUS NU Del et e_HI SR(NU_HI SR *hi sr)

This service deletes a previously created HISR. The parameter hi sr identifies the HISR
to delete. The application must prevent the use of this HISR during and after deletion.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, Signal Handler, Task
Category Interrupt Services
Parameters
Parameter Meaning
hi sr Pointer to the user-supplied HISR control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_HI SR | Indicates the HISR pointer is invalid.
Example
NU_HI SR Hi sr;

STATUS st at us

}* Del ete the H SR control block “H sr”. Assume “Hisr”
has previously been created with the Nucl eus PLUS
NU Create H SR service call. */

status = NU_Del ete_H SR(&Hi sr);

/* At this point, status indicates whether the service
request was successful. */

See Also

NU_Create_H SR, NU_Established_H SRs, NU H SR Pointers,
NU_HI SR I nfornati on

228

Chapter 13 - Interrupts

NU Est abl i shed HI SRs
UNSI GNED NU_Est abl i shed_HI SRs(VOl D)

This service returns the number of established HISRs. All created HISRs are considered
established. Deleted HISRs are no longer considered established.

Overview

Option
Tasking Changes No

Allowed From Application_lnitialize, Signal Handler, Task
Category Interrupt Services

Parameters

None

Return Value

This service call returns the number of established HISRs in the system.

Example
UNSI GNED t ot al _hi srs;

/[* Cbtain the total nunber of H SRs. */
total _hisrs = NU Established_H SRs();

See Also

NU Create_H SR, NU Del ete H SR, NU H SR Pointers,
NU_HI SR_I nf or mat i on

229

Nucleus PLUS Reference Manual

NU H SR I nformation

STATUS NU_HI SR I nformati on(NU_HI SR *hi sr, char *nane,

UNSI GNED *schedul ed_count,
DATA ELEMENT *priority,
VO D **stack_base,

UNSI GNED *st ack_si ze,

UNSI GNED *m ni num st ack)

This service returns various information about the specified HISR.

Overview
Option
Tasking Changes No
Allowed From Application_|lnitialize, Signal Handler, Task
Category Interrupt Services
Parameters
Parameter Meaning
hi sr Pointer to the HISR.
nane Pointer to an 8-character destination area for the HISR’s name.

schedul ed_count

Pointer to a variable for holding the total number of times this
HISR has been scheduled.

priority

Pointer to a variable for holding the HISR’s priority.

st ack_base

Pointer to a pointer for holding the original stack pointer. This
is the same pointer supplied during creation of the HISR.

stack_si ze

Pointer to a variable for holding the total size of the HISR’s
stack.

m ni mum st ack

Pointer to a variable for holding the minimum amount of
available stack space detected during HISR execution.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_| NVALI D_HI SR

Indicates the HISR pointer is invalid.

230

Chapter 13 - Interrupts

Exanpl e

NU_HI SR Hi sr;

CHAR hi sr _nane[8] ;

UNSI GNED activations;
DATA _ELEMENT priority;

VA D *st ack_base;

UNSI GNED st ack_si ze;
UNSI GNED m ni num st ack;
STATUS st at us

/* Obtain information about the H SR control bl ock
“Hisr”. Assume “Hisr” has previously been created
with the Nucl eus PLUS NU Create_HI SR service call. */
status = NU H SR Informati on(&Hi sr, hisr_name, &activations,
&riority, &stack_base, &stack_size,
&m ni mum st ack) ;

/* If status is NU SUCCESS, the other information is accurate. */

See Also

NU Create_H SR, NU Del ete_H SR, NU_Established_H SRs,
NU_HI SR _Poi nters

231

Nucleus PLUS Reference Manual

NU HI SR Pointers

UNSI GNED NU_HI SR_Poi nters(NU_H SR **pointer_list,

UNSI GNED maxi mum _poi nt ers)

This service builds a sequential list of pointers to all established HISRs in the system.

parameter poi nter_|i st

i NOTE: HISRs that have been deleted are no longer considered established. The
pointers, while maxi mum poi nters

is ordered from oldest to newest member.

points to the location used for building the list of
indicates the maximum size of the list.
This service returns the actual number of pointers in the list. Additionally, the list

Overview
Option
Tasking Changes No
Allowed From Application_Initialize, Signal Handler, Task
Category Interrupt Services
Parameters
Parameter Meaning

pointer _list

Pointer to an array of NU_HI SR pointers. This array will be
filled with pointers of established HISRs in the system.

maxi num poi nters

array.

The maximum number of NU_HI SR pointers to place into the
array. Typically, this will be the size of the poi nt er _

Return Value

This service call returns the number of HISRS that are active in the system.

Example

/* Define an array capable of holding 20 H SR pointers. */
NU_HI SR *Poi nter _Array|[20] ;
UNSI GNED nunber ;

/* Obtain a list of currently active H SR pointers (Mxi num of 20).
nunber = NU_HI SR _Poi nt er s(&Poi nter _Array[0], 20);

/* At this point,

nunber contains the actual nunber of

pointers in the list. */

See Also

NU Create_H SR, NU Del ete_H SR, NU_Established_H SRs,
NU_HI SR I nf ormat i on

232

*/

list

Chapter 13 - Interrupts

NU Local Control Interrupts
I NT NU _Local _Control _Interrupts(INT new_|evel)

This service enables or disables interrupts according to the value specified in new_| evel .
Interrupts are disabled and enabled in a subroutine-dependent manner. This service
changes the Status Register to the value specified. The Status Register will be set back to
value set by the last call to NU Control _Interrupts on the next context switch.
Values of new | evel are processor dependent. However, the values
NU_DI SABLE_| NTERRUPTS and NU_ENABLE_I NTERRUPTS may be used to disable all
interrupts and enable all interrupts, respectively.

Overview

Option
Tasking Changes | No
Allowed From LISR, HISR, Signal Handler, Task

Category Interrupt Services
Parameters
Parameter Meaning
new_| evel New interrupt level for the current subroutine. The options

NU_DI SABLE | NTERRUPTS (disable all interrupts) and
NU_ENABLE_I NTERRUPTS (enable all interrupts) are always
available. Other options may be available depending upon
architecture. See the target specific notes for more information.

Return Value
This service returns the previous level of enabled interrupts.

Example
INT old_level; /* Ad interrupt |level. */

/* Lockout all interrupts tenporarily. */
ol d_I evel =NU_Local _Control _I nterrupt s(NU_DI SABLE | NTERRUPTS) ;

return; /* O interrupt return. */

See Also
NU_Setup_Vector, NU Register_LISR NU Create_H SR, NU Del ete_H SR

233

Nucleus PLUS Reference Manual

NU Regi ster LI SR

STATUS NU_Regi ster LI SR(I NT vector, VO D(*lisr_entry)(INT),
VO D (**old_lisr)(INT))

This service associates the LISR function pointed to by |i sr_entry with the interrupt
vector specified by vector. System context is automatically saved before calling the
specified LISR and is restored after the LISR returns. Therefore, LISR functions may be
written in C. However, LISRs are permitted access to only a few of Nucleus PLUS
services. If interaction with other Nucleus PLUS services is required, a High-Level
Interrupt Service Routine (HISR) must be activated by the LISR.

If the |isr_entry parameter is NU_NULL, the registration of the specified vector is
cleared.

Caution: If an LISR is written in assembly language, it must follow the C
compiler’s conventions regarding register usage and the return mechanism. See
your compiler documentation for specific requirements of C-assembly language

interaction.
Overview
Option
Tasking Changes No
Allowed From LISR, HISR, Signal Handler, Task
Category Interrupt Services
Parameters
Parameter Meaning
vector The interrupt vector at which to register the interrupt.
l'isr_entry The subroutine to register at the vector.
old_lisr The subroutine previously registered at the specified vector.

234

Chapter 13 - Interrupts

Return Value

Status Meaning

NU_SUCCESS Indicates successful completion of the service.

NU_I NVALI D VECTOR | Indicates the specified vector is invalid.

NU_NOT_REGQ STERED | Indicates the vector is not currently registered and de-
registration was specified by |isr_entry.
NU_NO_MORE_LI SRS Indicates the maximum number of registered LISRs has
been exceeded. The maximum number can be changed in
NUCLEUS. H. NOTE: Given this return value, the Nucleus
PLUS library will need to be rebuilt.

Example

STATUS st at us;
VO D (*old_lisr)(INT);

/* Associate vector 10 with the LISR function “LI SR exanple”.
voi d LI SR exanpl e(I NT vect or _nunber)

/* vector_nunmber contains the actual interrupt
vector nunber. */

/* Nucl eus PLUS service calls, with the exception of NU Activate_H SR and
several others, are not allowed in this function. */

status = NU Register_LISR(10, LISR exanple, &old_lisr);
/* If status is NU SUCCESS, LISR exanple is executed when

interrupt vector 10 occurs. Note: “old_lisr” contains
the previously registered LISR */

See Also

NU Control _Interrupts, NU Create_H SR, NU Del ete_HI SR,
NU Activate_ H SR

235

Nucleus PLUS Reference Manual

NU_Set up_Vect or

VO D *NU_Set up_Vector (I NT vector, VO D *new)

This service replaces the interrupt vector specified by vect or with the custom Interrupt
Service Routine (ISR) supplied by the caller (parameter new). The previous interrupt
vector contents are returned by the service.

and are responsible for saving and restoring any registers used. In some ports of
Nucleus PLUS there are some additional constraints imposed on such ISRs.
Please see the processor-specific Portation Notes for additional target-specific

: Caution: ISRs supplied to this routine are typically written in assembly language

information.
Overview
Option
Tasking Changes No
Allowed From LISR, HISR, Signal Handler, Task
Category Interrupt Services
Parameters
Parameter Meaning
vect or The interrupt vector at which to register the interrupt.
new The subroutine to register at the vector.

Return Value

A pointer to the subroutine previously registered at the interrupt vector.
Example
VO D *ol d_vector;

/* Place an assenbly | anguage | SR named “asm | SR’ into vector 5. */
ol d_vector = NU Setup_Vector (5, asm.|SR);

See Also
NU Control _Interrupts, NU Register_LISR

236

Chapter 13 - Interrupts

Managed ISRs

Managed ISRs are referred to in this document as Low-Level Interrupt Service Routines
(LISR). LISRs execute in the same fashion as a traditional ISR, except all context saving
and restoring is taken care of by Nucleus PLUS.

The following is an example segment of code that defines a LISR function and registers it
with vector 10:
VO D (*old_lisr)(INT);

VO D Exanpl e_LI SR(I NT vector);
INT Interrupt_Count = O;

}* Regi ster the LISR with vector 10. The previously registered
LISRis returned in old lisr. */
NU_Regi ster _LI SR(10, Exanple_LISR, &old_lisr);

/* Actual definition of the LISR associated with vector 10. */
VO D Exanpl e_LI SR(I NT vector)

/* Increment the global interrupt counter. */
I nt errupt _Count ++;

}

When interrupt 10 occurs, Exanpl e_LI SR is called with the vector parameter set to 10.
Interrupt processing consists of incrementing a global variable, which is completed when
Exanpl e_LI SR returns. It is important to note that LISRs have extremely limited access
to Nucleus PLUS services. For example, if a task must be resumed as a result of interrupt
10, a High-Level Interrupt Service Routine (HISR) must be activated from within the
LISR.

237

Nucleus PLUS Reference Manual

The following example resumes the task pointed to by Task_O_Ptr when interrupt 10
occurs:

extern NU_TASK *Task_0_Ptr;

NU_HI SR H SR Control ;

CHAR HI SR_St ack[500] ;

VA D (*old_lisr)(INT);

VA D Exanpl e_LI SR(I NT vector);

VO D Exanpl e_H SR(VO D) ;

/* Create a HSR This HHSRis activated by the LISR
associ ated with vector 10. */

NU_Creat e_H SR(&H SR Control, “EXVMPH SR’,

Exanpl e_H SR, 2, H SR Stack, 500);

/* Register the LISR with vector 10. The previously
registered LISR is returned in old_lisr. */

NU_Regi ster _LI SR(10, Exanple_LISR, &old_lisr);

/* Actual definition of the LISR associated with
vector 10. */
VO D Exanpl e_LI SR(I NT vect or)

{

/* Activate Exanple_H SR to resune the task pointed to by
“Task_O_Ptr.” Not allowed to call npst Nucl eus PLUS
services fromLISR */

NU_Acti vate_Hl SR(&H SR Control);

}

/* Actual definition of the H SR associated with the
Exanpl e_LI SR function. */

VO D Exanpl e_H SR(voi d)

{

/* Resune the task pointed to by “Task_O_Ptr” */
NU_Resunme_Task(Task_0 Ptr);

}

238

Chapter 13 - Interrupts

Unmanaged ISRs

Nucleus PLUS supports unmanaged ISRs through direct access to the interrupt vector table
(in most processor architectures). The NU_Setup_Vector service may be used to
associate a specific interrupt vector with the unmanaged ISR. Alternatively, the
unmanaged ISR’s address may be placed directly in the Nucleus PLUS vector table, which
is usually defined in the | NT. ? file.

Unmanaged ISRs are typically implemented for high-frequency interrupts. The amount of
overhead associated with context saving and restoring is proportional to frequency of the
interrupts. When the time between interrupts gets anywhere near the time required to save
and restore context, an unmanaged ISR is necessary. For example, if an interrupt occurs
every 30us and managed interrupts require 15us of overhead, half of the processing power
is lost in the management of the interrupt.

Suppose a mythical processor has 32 registers, named r0..r31. Now suppose that every
30us an interrupt occurs. Furthermore, the only requirement of the ISR is to place a 1 in
some memory-mapped location. The following is an example of a minimal ISR (in
mythical assembly language) to satisfy the requirement:

Minimal_ISR:
push rO ; Save r0
mv 1, r0 ; Place a 1 into r0
nmov r0, nem.nap_| oc ; Set nenory napped | ocation
pop rO ; Recover r0
iret ; Return frominterrupt

If a fully managed interrupt on this mythical processor requires 15®s to save and restore
all 32 registers, and this minimal ISR only takes 1®s, then a 30®s interrupt might be
feasible.

239

Nucleus PLUS Reference Manual

Unfortunately, not all high-frequency interrupt handlers are so easy. In many situations,
such interrupts correspond to the availability of data to process. The most common
technique to handle this situation involves buffering the interrupt information. The
minimal ISR manipulates data in a global memory location for processing by an
application task that either runs continuously or in some periodic fashion. An alternative
method would be the creation of a minimal ISR that manages buffered data, and
occasionally invokes Nucleus PLUS.

The following is the same minimal ISR, with occasional interaction with Nucleus PLUS.
(Assume previous LISR/HISR example definitions.)

Minimal_ISR:

push r0 ; Save ro0
mv 1, r0 ; Place a 1 into r0
mov r0, mem nmap_| oc ; Set nmenory mapped | ocation
; Buffer processing in this area

; Check to see if a buffer overflow condition
; 1s present. |f so, invoke Nucleus PLUS to

wake up task O.
mov buffer_full, r0 ; Put buffer full code in r0
cmp r0, 1 ; If buffer is not full, just
jne _Fast_Interrupt ; process fast interrupt

; Call Nucl eus PLUS context save routine

pop rO ; Recover r0

call _TCT_ I nterrupt_Context_Save

mov 10, r0 ; Put vector nunmber into rO
push r0 ; Put it on the stack

call _Exanple_LI SR ; Call Exanple_LISR to activate
; HHSR that actually resunes

; task O

pop rO ; Cean up the stack

; Restore context, note that control does not return
jmp _TCT_I nterrupt_Context_Restore

Fast _Interrupt:

pop rO ; Recover r0

iret ; Return frominterrupt

Of course, the previous examples are in an assembly language for a mythical processor.
Detailed examples of such interrupt handlers are located in the Portation Notes for the
given target processor.

240

System
Diagnostics

Introduction

Function Reference

Example Source Code

241

Nucleus PLUS Reference Manual

Introduction

Nucleus PLUS provides application tasks with several facilities that improve diagnosis of
system problems.

Error Management

If a fatal system error occurs, processing is transferred to a common error handling routine.
By default, this routine prepares an ASCII error message and halts the system. However,
additional error processing may be added by the application developer.

System History

Nucleus PLUS provides a circular log of various system activities. Application tasks and
HISRs can make entries to this log. Nucleus PLUS services have a conditional compilation
option that enables entries into the history log each time a service request is made. Each
entry in the history log contains information about the service and the caller.

Version Information

RLD _Rel ease_Stri ng is a global C string that contains the current version and release of
the Nucleus PLUS software. Examination of this string in the target system provides quick
identification of the underlying Nucleus PLUS system.

License Information

LID License_String is a global C string that contains customer license information,
including the customer’s serial number.

Building the PLUS Library

In order for history savinng to be enabled, the Nulcleus PLUS library must be rebuilt to
support history saving. In order to save code space, this feature defaults to off for all
Nucleus PLUS libraries. To enable history saving, the library must be built with
NU_ENABLE_HI STORY defined.

242

Chapter 14 - System Diagnostics

Function Reference

The following function reference contains all functions related to Nucleus PLUS system
diagnostics. The following functions are contained in this reference:

NU_Di sabl e_Hi st ory_Savi ng
NU_Enabl e_Hi st ory_Savi ng
NU_Li cense_I nformati on
NU_Make_Hi story Entry
NU_Rel ease_I nformati on

NU Retrieve_H story Entry

NU Di sabl e Hi story_ Savi ng
VO D NU_Di sabl e_Hi story_Savi ng(VA D)

This service disables internal history saving. Often this service is used to disable history
saving in preparation for examination of the history log.

Overview

Option
Tasking Changes | No

Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Development Services

Parameters

None

Return Value

None

Example

/* Disable history saving. */
NU_Di sabl e_Hi story_Savi ng();

See Also
NU_Enabl e_Hi story_Saving, NU Retrieve_ History Entry

243

Nucleus PLUS Reference Manual

NU _Enabl e _Hi story_Savi ng

VO D NU_Enabl e_Hi st ory_Savi ng(VO D)

This service enables internal history saving.

Overview

Option

Tasking Changes

No

Allowed From

Application_lnitialize, HISR, Signal Handler, Task

Category

Development Services

Parameters

None

Return Value

None

Example

/* Enabl e internal
NU_Enabl e_Hi story_Savi ng();

See Also

NU_Di sabl e_Hi st ory_Savi ng,

hi story.

NU_Make_ History Entry

244

*/

NU Retrieve H story Entry,

Chapter 14 - System Diagnostics

NU Li cense_Information
CHAR *NU_Li cense_I nf or mati on(VO D)

This service returns a pointer to a string that contains the customer’s serial number and a
small product description. The string is in ASCII format and is NULL terminated.

Overview

Option
Tasking Changes | No

Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category Development Services

Parameters

None

Return Value

This service call returns a pointer to a string containing a serial number and product
description.

Example
CHAR *I|icense_string;

/* Obtain a pointer to the custoner’s license string. */
license_string = NU_License_|lnformation();

See Also

NU_Rel ease_I nformati on

245

Nucleus PLUS Reference Manual

NU Make History Entry

VO D NU_Make_Hi story_Entry(UNSI GNED par an,
UNSI GNED par an?,
UNSI GNED par anB)

This service makes an entry in the system history log if the history log capability is
enabled. Otherwise, this service does nothing.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category Development Services
Parameters
Parameter Meaning
par anmt First variable to log to the history entry.
par an2 Second variable to log to the history entry.
par anB Third variable to log to the history entry.

Return Value

None

Example

/* Make an entry in the history |log that has the val ues
1, 2, and 3 for the parameters. */
NU_Make Hi story_ Entry(1,2,3);

See Also

NU_Enabl e_Hi story_Savi ng, NU_Di sabl e_Hi story_Savi ng,
NU Retrieve_Hi story Entry

246

Chapter 14 - System Diagnostics

NU Rel ease I nformation
CHAR *NU_Rel ease_I nf or mati on(VO D)

This service returns a pointer to the Nucleus PLUS release information string. The string
is in ASCII format and is NULL terminated.

Overview

Option
Tasking Changes | No

Allowed From HISR, Signal Handler, Task
Category Development Services

Parameters

None

Return Value

This service call returns a pointer to a string containing release information.

Example

CHAR *rel ease_poi nter;

/* Point at the Nucl eus PLUS rel ease information string. */
rel ease_pointer = NU Rel ease_| nformation();

See Also

NU _Li cense_I nformati on

247

Nucleus PLUS Reference Manual

NU Retrieve Hi story Entry

STATUS NU Retrieve_History_ Entry(DATA ELEMENT *id,

UNSI GNED * par amt,
UNSI GNED * par an®,
UNSI GNED * par an8,
UNSI GNED *ti ne,
NU_TASK **t ask,
NU_HI SR **hi sr)

This service returns the oldest entry in the system history log.

A

NOTE: It is usually a good idea to disable history saving prior to using this
service. History saving must be enabled in order to record history entries. By
default, the system history log is disabled at start up.

Overview
Option
Tasking Changes | No
Allowed From HISR, Signal Handler, Task
Category Development Services
Parameters
Parameter Meaning
id Pointer to a variable for holding the ID of the entry. NOTE:
Nucleus PLUS service IDs are the service name in CAPS with an
_I D appended to the end. Entries made by the user have an ID of
NU_USER | D.
parant, 2, 3 Pointers to variables for holding the first, second, and third history
parameter entries.
tinme Pointer to a variable for holding the value of the system clock that
corresponds to this entry.
task Pointer to a task pointer for holding the pointer of the task that
made the entry.
hi sr Pointer to a HISR pointer for holding the pointer of the HISR that
made the entry.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_END_OF_LOG | Indicates that there are no more entries in the log.

248

Chapter 14 - System Diagnostics

Example

DATA ELEMENT id

UNSI GNED par ant;
UNSI GNED par an®;
UNSI GNED par anB;
UNSI GNED time;
NU_TASK *task
NU_HI SR *hi sr

/* Assunme the systemhistory log is al ready disabl ed.
Pick up the next npbst recent entry. */
status = NU Retrieve History Entry(& d, ¶ml, ¶n®,
¶nB, &time, &task
&hi sr);

/* If status is NU SUCCESS, the supplied variables have valid
information. Note: either task or hisr must be NULL. */

See Also
NU_Enabl e_Hi story_Savi ng, NU _Di sabl e_Hi story_Savi ng

Example Source Code

The following example will demonstrate how the Nucleus PLUS history functions could
be used to store a log of system errors.

Include all necessary Nucleus PLUS include files

#i ncl ude "nucl eus. h"

As previously mentioned, this example will demonstrate how history entries could be used
to indicate whenever a system error occurred. The following defines will be used to
indicate what error has occurred, and will be used by the NU_Make_Hi story_Entry
service call.

#def i ne ERR_CREATE_NEMORY 101
#def i ne ERR_ALLOCATE_MENORY 102
#def i ne ERR_CREATE_TASK 103

Two Nucleus PLUS structures will be used in this example. The task control block,
dm nenory, will be used for the dynamic memory pool out of which all memory will be
allocated. The NU TASK structure, t ask_send will be used in
Application_lnitializebythe NU Create_Task service call.

249

Nucleus PLUS Reference Manual

NU_MEMORY_POOL dm nenory;

NU_TASK t ask_send;

A single void pointer will be used in this example. The void pointer will hold a pointer to
the task stack for t ask_send. Although not demonstrated in this program, this pointer
could be used at a later time in the program to deallocate the stack associated with this
task.

VA D *stack_send;

Two functions will be used in this demonstration program. The function error will be used
to make a history entry with the NU_Make_Hi st ory_Ent ry service call. Similarly, the
process_history function will be wused to retrieve the history entries with
NU Retrieve Hi story Entry.

VO D error (UNSI GNED err_code) ;
VA D process_history();

Declare the task entry point function for the t ask_send task. This function will later be
passed as a parameter to the NU_Creat e_Task call which will assocaiate it with the
t ask_send task control block. For this example, the function send_dat a will serve as a
function stub for the NU_Cr eat e_Task function call.

VA D send_dat a(UNSI GNED argc, VA D *argv);

In this demonstration, the Application_Initialize function will be used to make
several Nucleus PLUS service calls, and check the return values for errors. If an error
occurs, a call to the error function will be isssued, which will in turn call
NU_Make History Entry.

VO D Application_lnitialize(VOD *first_avail abl e_nmenory)

We must tell Nucleus PLUS that we will me making history entries. We do this by calling
NU_Enabl e_Hi st ory_Savi ng. This service calls allows an application to be developed
that makes numerous history entries. Then, by removing this function call, history
processing will not occur, which can save valuable processing time.

Enable application level history saving with a call to NU_Enabl e_Hi st ory_Savi ng.
NU_Enabl e_Hi st ory_Savi ng();

For this example, we will make a «call to NU Create_Menory_Pool,
NU_Al | ocat e_Menory, and NU_Cr eat e_Task. For each of these calls, check the return
status. If an error occurred, make a call to the error function. The error function will then
make a call to NU_Make_Hi st ory_Ent ry to log the error.

250

Chapter 14 - System Diagnostics

if (NU_Create_Menory_Pool (&Im nenory, "sysnent,
first_avail abl e_menory, 10240, 128,
NU_FI FO) ! = NU_SUCCESS)

{
er r or (ERR_CREATE_MEMORY) ;

}

if (NU_Allocate_Menory(&Im nenory, &stack_send, 1024, NU_NO_SUSPEND)
I = NU_SUCCESS)

{
error (ERR_ALLOCATE_MEMORY) ;

}

if (NU_Create_Task(&t ask_send, "SEND', send_data, 0, NU_NULL,
stack_send, 1024, 3, 0, NU_PREEMPT, NU START) != NU_SUCCESS)
{

}

For this example, at the end of Appl i cation_Initialize, call the process_hi story
function, which will retrieve all current history log entries.

error (ERR_CREATE _TASK) ;

process_history();

}

The send_dat a function is the task entry point for the t ask_send task. In this example,
the task is only created to demonstrate history saving, so there is no processing code
contained in the task entry point.

VA D send_dat a(UNSI GNED argc, VO D *argv)
{
}

Each application level history entry consists of three separate UNSI GNED numbers. For this
example, we will use the first to record the error, but set the last two to 0 indicating that
they are not being used.

VA D error (UNSI GNED err_code)

NU_Make_ Hi story_Entry(err_code, 0, 0);
}

The function process_history will be used to loop through all history entries,
removing each of them from the history log.

VO D process_history()
{

The following data elements will be used by the NU_Retri eve_Hi story_Entry service
call, and will hold the individual elements for each history entry.

251

Nucleus PLUS Reference Manual

DATA ELEMENT i d;
UNSI GNED par ant;
UNSI GNED par an®;
UNSI GNED par an8;
UNSI GNED ti mre;
NU_TASK *t ask;
NU_HI SR *hi sr;

CHAR *1i cense_i nf o;
CHAR *rel ease_i nf o;

After the following two service calls, | i cense_i nf o and r el ease_i nf o will contain a
string holding the license information, and release information respectively.

l'icense_info
rel ease_info

NU_Li cense_I nformation();
NU_Rel ease_I nformation();

It is always good practice to disable history saving before retrieving history entries. To do
this, call the NU_Di sabl e_Hi st ory_Savi ng service call.

NU_Di sabl e_Hi story_Savi ng();

For each entry in the history log, call NU_Retri eve_Hi story_Entry to remove the
history entry from the log. The NU Retrieve_Hi story_Entry service call returns
NU_SUCCESS if a history entry was successfully received, so we will use this to
continually loop until there are no more history entries. While not demonstrated here, each
history entry could then be sent to a serial port, saved to external storage, or any other
means to store the history log.

while (NU Retrieve_ History Entry(& d, ¶nmil, ¶n®, ¶ns,

& ime, &t ask, &hisr)

== NU_SUCCESS)

{

}

To turn history saving back on, call the NU_Enabl e_Hi st ory_Savi ng service call.

NU_Enabl e_Hi st ory_Savi ng();
}

252

|/O Drivers

Introduction
Function Reference

Implementing an 1/O Driver

253

Nucleus PLUS Reference Manual

Introduction

Most real-time applications require input and output with various peripherals. The
management of such input and output is usually accomplished with an I/O device driver.

Common Interface

Nucleus PLUS provides a standard I/O driver interface for initialization, assign, release,
input, output, status, and terminate requests. This interface is implemented with a
common control structure. Each driver has a single point of entry. The control structure
identifies the service requested and all necessary parameters. If a specific driver requires
additional parameters, the control structure provides a mechanism to link a supplemental
control structure to it. Having a standard interface enables applications to deal with a
variety of peripherals in a similar, if not identical, manner.

Driver Contents

An I/O driver usually handles processing of initialize, assign, release, input, output, status,
and terminate requests. If the I/O driver is interrupt driven, interrupt handling routines are
also necessary.

Nucleus PLUS facilities may be used from within the I/O driver. Queues, pipes, and
semaphores are commonly utilized by I/O drivers.

Protection

In addition to the availability of most Nucleus PLUS services, I/O drivers are also supplied
with a service to protect internal data structures against simultaneous High-Level ISR
access. Protection from simultaneous access by Low-Level ISRs is accomplished by
disabling the appropriate interrupt.

Suspension

I/O drivers may be called from various threads in the system. If an I/O driver is called
from a task thread, suspension facilities associated with other Nucleus PLUS facilities are
available. Additionally, a service is provided to suspend and clear the HISR protection
simultaneously.

254

Chapter 16 - Demo Application

Dynamic Creation

Nucleus PLUS 1I/O drivers are created and deleted dynamically. There is no preset limit on
the number of I/O drivers an application may have. Each I/O driver requires a control
block. The control block memory is supplied by the application. Create and delete driver
routines do not actually invoke the driver. Separate calls must be made to initialize and
terminate the driver.

Driver Information

Application tasks may obtain a list of active I/O drivers. Detailed information is driver-
specific.

Function Reference

The following function reference contains all functions related to Nucleus PLUS I/O
Drivers. The following functions are contained in this reference:

NU Create_Driver

NU Del ete_Dri ver

NU Driver_Pointers
NU_Est abl i shed_Dri vers
NU_Pr ot ect
NU_Request _Dri ver
NU_Resune_Dri ver
NU_Suspend_Dri ver
NU_Unpr ot ect

255

Nucleus PLUS Reference Manual

NU Create Driver

STATUS NU Create_Driver(NU DRI VER *driver, CHAR *nane,

VO D (*driver_entry)
(NU_DRI VER*, NU_DRI VER REQUEST*))

This service creates an Input/Output Driver.

& NOTE: This service does not invoke the driver.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category 1/O Driver Services
Parameters
Parameter Meaning
driver Pointer to the user-supplied driver control block.
NOTE: all subsequent requests made to the driver require
this pointer.
nane Pointer to an 8-character name for the driver. The name

does not have to be null-terminated.

driver_entry

Specifies the function entry point to the driver. NOTE:
The function must conform to the described interface.

Return Value

Status

Meaning

NU_SUCCESS

Indicates successful completion of the service.

NU_I NVALI D_DRI VER

Indicates the driver pointer is NULL or is already in use.

NU_I NVALI D_PO NTER

Indicates the entry pointer is NULL.

256

Chapter 16 - Demo Application

Example

/* Assume driver’s control block “Driver” is defined
as a global data structure. This is one of
several ways to allocate a control bl ock. */

NU DRI VER Driver;

/* Assume status is defined locally. */
STATUS ; [* Driver creation status */
/* Create a driver where the function “Driver Entry” is
the entry point. Note that NU Request_Driver nust be
called after this to actually initialize the |I/0O
driver. */
status = NU Create Driver(&Driver, “any nanme”, Driver_Entry);
/* At this point, status indicates if the service was successful.*/

See Also
NU Del ete_Driver, NU Established _Drivers, NU Driver_Pointers

257

Nucleus PLUS Reference Manual

NU Del ete Driver
STATUS NU Del ete_Driver (NU_DRI VER *dri ver)
This service deletes a previously created I/O driver. The parameter dri ver identifies the

I/O driver to delete. All usage of the specified driver must be complete prior to calling this
service. This is typically accomplished with a terminate request.

Overview
Option
Tasking Changes No
Allowed From Application_|Initialize, HISR, Signal Handler, Task
Category 1/0O Driver Services
Parameters
Parameter Meaning
driver Pointer to the user-supplied driver control block.
Return Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_DRI VER | Indicates the driver pointer is invalid.

Example

NU_DRI VER Dri ver;
STATUS st at us

/* Delete the driver control block “Driver”. Assume
“Driver” has previously been created with the
Nucl eus PLUS NU Create Driver service call. */

status = NU Del ete_Driver(&Driver);

/* At this point, status indicates whether the
servi ce request was successful. */

See Also
NU Create_Driver, NU Established Drivers, NU Driver_Pointers

258

Chapter 16 - Demo Application

NU Driver Pointers

UNSI GNED NU Dri ver _Poi nters(NU_DRI VER **pointer _list,
UNSI GNED mexi mum _poi nt ers)

This service builds a sequential list of pointers to all established I/O drivers in the system.

& NOTE: I/O drivers that have been deleted are no longer considered established.
The parameter poi nter_|i st points to the location to build the list of pointers,
while maxi mum poi nt er s indicates the maximum size of the list. The service
returns the actual number of pointers in the list. Additionally, the list is ordered

from oldest to newest member.

Overview
Option
Tasking Changes No
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category 1/O Driver Services
Parameters
Parameter Meaning
pointer_list Pointer to an array of NU_DRI VER pointers. This array will be
filled with pointers of established I/O Drivers in the system.
Maxi mum poi nters The maximum number of NU_DRI VER pointers to place into
the array. Typically, this will be the size of the
poi nter_|ist array.

Return Value

This service call returns the number of HISRS that are active in the system.

Example
/* Define an array capable of holding 20 I/O driver pointers. */

NU_DRI VER *Poi nt er _Array[20] ;
UNSI GNED nunber ;

/* Cbtain a list of currently active I/O drivers (Maxi mum of 20). */
nurmber = NU Driver_Poi nters(&Pointer_Array[0], 20);

/* At this point, nunber contains the actual nunber
of pointers in the list. */

See Also
NU Create_Driver, NU Delete Driver, NU Established_Drivers

259

Nucleus PLUS Reference Manual

NU Est abl i shed Drivers

UNSI GNED NU_Est abl i shed_Dri ver s(VO D)

This service returns the number of established I/O drivers. All created I/O drivers are
considered established. Deleted I/O drivers are no longer considered established.

Overview

Option

Tasking Changes

No

Allowed From

Application_lnitialize, HISR, Signal Handler, Task

Category

I/O Driver Services

Parameters

None

Return Value

This service call returns the number of established I/O Drivers in the system.

Example
UNSI GNED total _drivers;

/*

t

otal _drivers =

See Also
NU Create_Driver, NU Delete Driver, NUDriver_Pointers

260

btain the total number of 1/O drivers. */

NU_Est abl i shed_Dri vers();

Chapter 16 - Demo Application

NU_Pr ot ect
VO D NU_Pr ot ect (NU_PROTECT *protect_struct)

This service initiates primitive protection of a critical data structure. Since I/O Drivers
often have to protect against simultaneous access from task and HISR components, this
service is typically reserved for protection of data structures within I/O Drivers. Normal
task synchronization should be done using the task synchronization services.

Note the following constraints:

The protection structure must be initialized to zero by the application.

After this service is called, the only available Nucleus PLUS services are NU_Unpr ot ect ,
NU_Suspend_Dri ver, and NU Resune_Dri ver. Nested calls to NU_Prot ect are not
allowed.

Overview
Option
Tasking Changes Yes
Allowed From HISR, Task, Signal Handler
Category 1/O Driver Services
Parameters
Parameter Meaning
protect_struct Pointer to user supplied protection structure.

Return Value

None

Example

NU_PROTECT Protect_Struct;
/* Initiate protection of the critical section associated
with the protection structure “Protect_Struct.”

Note: Protect_Struct nust be cleared prior to first use. */
NU_Pr ot ect (&Protect _Struct);

See Also
NU_Unprot ect, NU Suspend_Driver

261

Nucleus PLUS Reference Manual

NU_Request Dri ver

STATUS NU_Request _Driver (NU_DRI VER *dri ver,
NU_DRI VER_REQUEST *r equest)

This service sends the request structure pointed to by request to the I/O Driver
specified by driver. The definitions of standard I/O Driver requests can be found in
Appendix C.

Overview
Option
Tasking Changes Yes
Allowed From Application_lnitialize, HISR, Signal Handler, Task
Category 1/0O Driver Services
Parameters
Parameter Meaning
driver Pointer to the user-supplied driver control block.
request Pointer to the user-supplied request structure.

Return Value

Status Meaning

NU_SUCCESS Indicates successful initiation of the service. The
nu_st at us field of the request structure indicates the
actual completion status of the 1/0O request.

NU_I NVALI D_DRI VER Indicates the I/O Driver pointer is invalid.

NU_I NVALI D PO NTER | Indicates that the /O request pointer is NULL.

262

Chapter 16 - Demo Application

Example
NU_DRI VER Driver;
NU_DRI VER_REQUEST request;
STATUS st at us;

/* Build an initialization request to a sinple I/O Driver */
request. nu_function = NU_I NI Tl ALI ZE;

/* Send the initialization request to “Driver”. Assune
“Driver” has previously been created with the Nucl eus PLUS
NU Create_Driver service call. */

status = NU Request_Driver(&Driver, & equest);

/* If status indicates success, the driver received the request.

Additional |/O Driver specific status is available in the
request structure. */

See Also
NU_Est abl i shed_Drivers, NU Driver_Pointers

263

Nucleus PLUS Reference Manual

NU Resune_Dri ver
STATUS NU_Resume_Dri ver (NU_TASK *t ask)
This service resumes a task previously suspended by an NU_Suspend_Dri ver service.

Typically, this service and its suspension counterpart are services used within I/O Drivers.
The parameter t ask points to the task to resume.

Overview
Option
Tasking Changes Yes
Allowed From Application_Initialize, HISR, Signal Handler, Task
Category 1/O Driver Services
Parameters
Parameter Meaning
t ask Pointer to the user-supplied task control block.

Return Value

Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_TASK Indicates the task pointer is invalid.

NU_I NVALI D_RESUME | Indicates the specified task was not suspended by a
NU Suspend_Dri ver service.

Example

NU_TASK Task;
STATUS st at us;

}* Resune the task control block “Task” that was previously

suspended by an NU Suspend_Driver call. Assume “Task” has
previ ously been created with the Nucl eus PLUS
NU Create_Task service call. */

status = NU Resune_Driver (&Task);

See Also
NU_Suspend_Dri ver

264

Chapter 16 - Demo Application

NU_Suspend_Dri ver

STATUS NU_Suspend_Driver (VO D (*terni nate_routine) (VA D*),
VO D *i nformati on,
UNSI GNED t i neout)

This service suspends the calling task from within an I/O driver. The termination routine,
if specified, allows the driver to clean up any internal structures associated with the calling
task during termination or timeout processing.

& NOTE: Any protection established using the NU_Pr ot ect call remains in effect.

Overview
Option
Tasking Changes Yes
Allowed From Task
Category 1/O Driver Services
Return Parameters
Parameter Meaning
terninate_routine Pointer to a driver-specific termination/timeout routine
(Optional).
i nformation Pointer to supplemental information required for the
termination/timeout routine (Optional).
ti meout Timeout for suspension. A value of NU_SUSPEND indicates
an unconditional timeout.
Value
Status Meaning
NU_SUCCESS Indicates successful completion of the service.
NU_I NVALI D_SUSPEND | Indicates that the routine was called from a non-task thread of
execution.
Example

/* This service is typically used inside of I/Odrivers
to suspend the current task while waiting for I/QO
Not e: any protection established using the NU Protect
call is cleared by this service. */

NU_Suspend_Dri ver (NU_NULL, NU_NULL, 0);

See Also
NU_Resune_Driver, NU Protect, NU_Unprotect

265

Nucleus PLUS Reference Manual

NU_Unpr ot ect
VO D NU_Unpr ot ect (VO D)

This service lifts the primitive protection of a critical data structure established by a
previous call to NU Protect. Since I/O Drivers often have to protect against
simultaneous access from task and HISR components, this service is typically reserved for
use within I/O drivers. Task synchronization should be done wusing the task
synchronization services.

NOTE: Care must be taken to avoid calling this routine if protection has already
been cleared.

Overview

Option
Tasking Changes Yes

Allowed From HISR, Task
Category 1/O Driver Services

Parameters

None

Return Value

None

Example

/* Lift the protection associated with the previous NU Protect call. */
NU_Unprot ect () ;

See Also
NU_Protect, NU Suspend_Driver

266

Chapter 16 - Demo Application

Implementing an 1/O Driver

Nucleus PLUS provides a basic set of I/O driver facilities. These facilities help foster a
consistent driver interface, regardless of the peripheral hardware supported. The basic I/O
driver facilities provided with Nucleus PLUS are as follows:

= (Create I/O Driver
= Delete I/O Driver
= Request I/O Driver

Before an I/O driver can be used it must be created. This is done with the Nucleus PLUS
service call NU _Create_Driver. Creation of an I/O driver makes it known to the rest of
the system.

& NOTE: The I/O driver created is not accessed during creation.

An I/O driver may be deleted, if it is no longer needed. The Nucleus PLUS service
NU Del ete_Dri ver performs this function. A deleted I/O driver is no longer accessible.

Actual Driver Requests

Applications make requests to drivers using the NU_Request _Dri ver service. The main
purpose of this function is to pass the supplied driver request structure to the entry function
of the specified I/O driver. The driver request structure contains all the information
pertaining to the driver request. This accommodates the different requirements of 1/0
drivers. For example, an input request made to a disk I/O driver is often different than an
input request made to a terminal I/O driver. Typically, a disk driver input request requires
a starting location on the disk (sector number) in addition to the number of bytes to read
and the buffer pointer. A terminal driver input request does not require any offset
information.

Nucleus PLUS has basic support for initialization, assign, release, input, output, status,
and terminate 1/0 driver requests. Of course, the parameters of each request may vary,
depending on the actual I/O driver.

After the NU_Request _Dri ver service returns, the status of the actual I/O request may be
determined by examination of the nu_st at us field in the request structure. If the status
field contains NU_SUCCESS, the request was completed successfully. If the request was
invalid, the contents of the status field is NU_I NVALI D_ENTRY. Finally, if an I/O error is
encountered during processing of the request, the nu_status field is set to NU_| O_ERROR.
Additional error information may be added by specific I/O drivers.

267

Nucleus PLUS Reference Manual

Initialization

An initialization request must be made after the I/O driver is created and before any other
driver request. This request is used to initialize the managed device and internal driver
control structures.

The following is a small code fragment on an initialization request:

NU_DRI VER_REQUEST r equest ;
STATUS st at us;

/* Build an initialization request for a sinple
I/Odriver. */

request.nu_function = NU_I NI Tl ALI ZE;

request. nu_ti meout = NU_NO_SUSPEND;

/* Send the initialization request to the previously
created |/Odriver, pointed to by “driver.” */

status = NU Request_Driver(driver, & equest);

/* The variabl e status indicates whether or not the
request was passed on to the driver, while the nu_status
field in the request indicates the conpletion status of
the initialization request.*/

Assign

An assign request is made in order to prevent simultaneous access to the driver by multiple
tasks. For example, if two tasks are sending strings to a terminal handler, one character at
a time, the strings are going to be mixed together- resulting in garbage on the screen. If
each task obtains exclusive access to the driver before printing the string, this problem is
eliminated.

The following is a small code fragment of an assign request.

NU_DRI VER_REQUEST r equest ;
STATUS st at us;

/* Build an assign request for a sinple I/Odriver.*/
request. nu_functi on = NU_ASSI G\
request. nu_ti meout = NU_NO_SUSPEND;

/* Send the assign request to the driver pointed to
by “driver.” */
status = NU_Request_Driver(driver, &request);

/* The variable status indicates whether or not the
request was passed on to the driver, while the
nu_status field in request indicates the conpletion
status of the assign request. */

268

Chapter 16 - Demo Application

Release

The release request removes a previous assignment. If another task is waiting to assign the
driver, the assignment is transferred to the first task waiting. The following is a small code
fragment of a release request:

NU_DRI VER_REQUEST r equest ;
STATUS st at us;

/* Build a rel ease request for a sinple I/Odriver.*/
request. nu_functi on = NU_RELEASE;
request.nu_tineout = NU_NO_SUSPEND,

/* Send the rel ease request to the driver pointed
to by “driver.” */
status = NU Request_Driver(driver, & equest);

/* The variable status indicates whether or not the
request was passed on to the driver, while the nu_
status field in the request indicates the conpletion
status of the rel ease request. */

Input

An input request instructs the driver to obtain a certain amount of data from the associated
device. The following is a small code fragment of an input request:

CHAR buf f er[100] ;
NU_DRI VER_REQUEST request;

STATUS st at us;

/* Build an input request for a sinple I/Odriver. */

request. nu_functi on = NU_I NPUT;

request. nu_ti meout = NU_NO_SUSPEND;

request. nu_request _i nfo. nu_i nput. nu_buffer_ptr = (VOD *) buffer;
request. nu_r equest _i nfo. nu_i nput. nu_r equest _si ze = 100;

/* Send the input request to the driver pointed to by "driver.” */

status = NU Request_Driver(driver, & equest);

/* If status and request.nu_status are successful, then the buffer contains
actual data. */

269

Nucleus PLUS Reference Manual

Output

An output request instructs the driver to send the specified amount of data to the associated
device. The following is a small code fragment of an output request:

CHAR buf f er [100] ;
NU_DRI VER_REQUEST request;
STATUS st at us;

for /* Build an output request a sinple |/O driver.*/
request. nu_function = NU_OUTPUT,;

request.nu_tineout = NU_NO_SUSPEND,

request. nu_r equest _i nfo. nu_out put. nu_buffer_ptr =

(v D *) buffer;

request . nu_request _i nf o. nu_out put . nu_r equest _si ze = 100;

/* Send the output request to the driver pointed to
by “driver.” */
status = NU_Request_Driver(driver, &request);

/* If status and request.nu_status are successful, then the buffer contents
were actually witten out. */

Status

Status requests are typically I/O driver dependent. The driver’s name is always available
in the driver control structure, in the field nu_dri ver _nane. The following is a small
code fragment of a status request:

NU_DRI VER_REQUEST r equest ;
STATUS st at us;

/* Build a status request for a sinple driver. */
request. nu_function = NU_STATUS;

/* Send the status request to the driver pointed
to by “driver.” */
status = NU Request_Driver(driver, & equest);

/* If status is equal to NU SUCCESS, the driver was

successfully invoked. The val ue of request.nu_status,
along with other possible fields is driver dependent. */

270

Chapter 16 - Demo Application

Terminate

Terminate requests are typically I/O driver dependent, and are optional. Some drivers may
require a terminate request before they can be deleted or re-initialized.

The following is a small code fragnent of a terminate request:
NU_DRI VER_REQUEST r equest ;
STATUS st at us;

/* Build a term nate request for a sinple driver. */
request. nu_functi on = NU_TERM NATE;

/* Send the terminate request to the driver pointed
to by “driver.” */
status = NU Request_Driver(driver, & equest);

/* If status is equal to NU SUCCESS, the driver was

successfully term nated. At this point, the driver
may be deleted or re-initialized. */

271

Nucleus PLUS Reference Manual

Driver Implementation

Up to this point, the I/O driver information has been concerned with how to use an I/O
driver. This section covers what an I/O driver actually looks like.

I/O drivers are basically a C function with a switch statement. They often include LISR
and HISR interrupt handlers and custom functions. All Nucleus PLUS I/O drivers have an

entry function similar to the template below:

VO D Driver_Entry(NU DRI VER *dri ver,

/*
}

272

NU_DRI VER_REQUEST *request)

/* Process according to the request nade.
swi tch(request -> nu_function)

}

case NU_I NI Tl ALI ZE:
/* Initialization processing.

Note: nu_info_ptr field of “driver” is
avai l able for the driver’s use.

br eak;

case NU_ASSI G\
/* Assign processing. */
br eak;

case NU_RELEASE:
/* Rel ease processing. */
br eak;

case NU_I NPUT:
/* I nput processing. */
br eak;

case NU_QUTPUT:
/* Qutput processing. */
br eak;

case NU_STATUS:
/* Status processing. */
br eak;

case NU_TERM NATE:
/* Term nate processing. */
br eak;

defaul t:
/* Bad request processing. */
br eak;

End of driver request, return to caller.

*/

*/

Chapter 16 - Demo Application

There are several fields available in the driver control structure (NU DRI VER) to the
driver. The following is a list of available structure fields and their associated meaning:

Field Meaning

nu_i nfo_ptr Pointer to driver specific information. If used, this field is
typically set up during initialization to some type of
supplemental control structure specific to the I/O driver.
nu_driver_nanme | This is the eight-character name associated with the I/O driver.

273

Nucleus PLUS Reference Manual

Example Driver

The code fragment below represents a minimal terminal I/O driver for an MS-DOS
system. The driver supports polled, single character input and output requests.

& NOTE: The driver is accessible only from task threads.

/* Entry function of the minimal termnal driver exanple. */
VO D Term nal _Driver(NU_DRI VER *driver, NU DRI VER REQUEST *request)
{

char *pointer;

/* Process according to the request made. */
swi tch(request -> nu_function)

case NU_I NI TI ALI ZE:
/* Do nothing for initialization. */
br eak;

case NU_| NPUT:
/* Wait for the user to press a key. */
while (!kbhit())

/* Sleep a tick to allow other tasks to run. */
NU_Sl eep(1);
}

/* Setup input character pointer. */
poi nter = (char *)request ->

nu_r equest _i nfo. nu_i nput . nu_buf fer_ptr;
/* Character present, read it into the
suppl i ed destination. */

pointer = (char) getch();

/* 1 ndicate successful conpletion. */
request -> nu_status = NU_SUCCESS;

br eak;

case NU_OUTPUT:
/* Setup output character pointer. */
pointer = (char *) request ->
nu_r equest _i nf o. nu_out put . nu_buffer_ptr;
/* Call putch to print supplied character. */
putch((int) *pointer);
/* 1 ndicate successful conpletion. */
request -> nu_status = NU_SUCCESS;
br eak;

defaul t:
/* Bad request processing. */
request -> nu_status = NU_| NVALI D_ENTRY;

br eak;
}
/* End of driver request, return to caller. */
}

274

Demo
Application

~ Example Overview

=

L — Example System

275

Nucleus PLUS Reference Manual

Example Overview

The example system described in this chapter is comprised of an
Application_Initialize function and six tasks. All of the tasks are created during
initialization. In addition to task execution, task communication and synchronization are
demonstrated in this example.

In the example system listing, the data structures are defined between lines 3 and 20.
Nucleus PLUS control structures are defined between lines 3 and 13.

Application_lnitialize starts at line 30, and ends at line 71. In this example, all
system objects (tasks, queues, semaphores, and event flag groups) are created during
initialization. The example system tasks are created between lines 38 and 61. The
communication queue is created at line 64. The system semaphore is created at line 68.
Finally, the system event flag group is created at line 70.

NOTE: A 20,000 byte memory pool, starting at the address specified by the
first_avail abl e_nmenory parameter is created first, at line 35. This memory
pool is used to allocate all of the task stacks and the actual queue area.

Task 0 is the first task to execute when the system starts. This is because task 0 is the
highest priority task in the system (priority 1). Task 3 executes after task 0 suspends
(priority 5). Task 4 executes after task 3 suspends. It is important to realize why task 3
executes before task 4 although they both have the same priority. The reason for this is
that task 3 was created and started first (see Application_Initialize). Tasks of the
same priority execute in the order they become ready for execution. After task 4 suspends,
task 5 executes (priority 7). After task 5 suspends, task 1 executes (priority 10). Finally,
task 2 executes (priority 10) after task 1 suspends on a queue full condition.

Task 0 is defined between lines 76 and 92. Like all of the tasks in this example system,
task 0 does some preliminary initialization and then starts execution of an endless loop.
Processing inside of task 0’s endless loop includes successive calls to NU_Sl eep and
NU_Set _Events. Because of the call to NU_SI eep, task 0’s loop is executed once every
18 timer ticks.

NOTE: Task 5 is made ready on each call to NU_Set _Events. Since task 5 has
a lower priority than task 0, it does not execute until task 0 executes the
NU_SI eep call again.

Task 1 is defined between lines 96 and 121. Task 1 continually sends a single 32-bit
message to queue 0. When the capacity of the queue is reached, task 1 suspends, until
room is available in queue 0. The suspension of task 1 allows task 2 to resume execution.

Task 2 is defined between lines 124 and 156. Task 2 continually retrieves single 32-bit
messages from queue 0. When the queue becomes empty, task 2 suspends. The
suspension of task 2 allows task 1 to resume execution.

276

Chapter 16 - Demo Application

Tasks 3 and 4 share the same instruction code. However, each task has its own unique
stack. Tasks 3 and 4 are defined between lines 162 and 184. Each task competes for a
binary semaphore. Once the semaphore is obtained, the task sleeps for 100 ticks before
releasing the semaphore again.

This action allows the other task to execute and suspend attempting to obtain the same
semaphore. When the semaphore is released, suspension is lifted on the task waiting for
the semaphore.

Task 5 is defined between lines 186 and 204. This task is in an endless loop waiting for an
event flag to be set. The desired event flag is set by task 0. Therefore, task 5 executes at
the same frequency as task 0.

Example System

The following is a source file listing of the example system.

NOTE: The line number on the left is not part of the actual file, it is there for
reference purposes only.

1 /* I nclude necessary Nucl eus PLUS files. */
2 #include “nucl eus. h”

3 /* Define Application data structures. */
4 NU_TASK Task_0O;

5 NU_TASK Task_1;

6 NU_TASK Task_2;

7 NU_TASK Task_3;

8 NU_TASK Task_4;

9 NU_TASK Task_5;

10 NU_QUEUE Queue_0;
11 NU_SEMAPHORE Senmaphor e_0;

12 NU_EVENT_GROUP Event _G oup_0;

13 NU_MEMORY_POOL System Menory;

14 /* Allocate global counters. */

15 UNSI GNED Task_Ti ne;

16 UNSI GNED Task_2_nessages_recei ved;
17 UNSI GNED Task_2_inval i d_messages;
18 UNSI GNED Task_1_nessages_sent;

19 NU_TASK* Who_has_t he_resour ce;

20 UNSI GNED Event _Det ecti ons;

21 /* Define prototypes for function references. */
22 void task_O(UNSI GNED argc, VO D *argv);

23 voidtask_1(UNSIGNED argc, VO D *argv);

24 void task_2(UNSI GNED argc, VO D *argv);

25 void task_3_and_4(UNSI GNED argc, VO D *argv);

26 void task_5(UNSI GNED argc, VO D *argv);

27 |* Define the Application_lnitialize routine that determines the initial
28 Nucl eus PLUS application environment. */

277

Nucleus PLUS Reference Manual

278

voi d Application_Initialize(void *first_avail abl e_nenory)
{
VA D *poi nter;

/* Create a systemnenory pool that will be used to allocate task
stacks, queue areas, etc. */

NU_Creat e_Menory_Pool (&Syst em Menory, “SYSMEM', first_avail abl e_nenory,
20000, 50, NU_FIFO;

/* Create each task in the system */

/* Create task 0. */

NU_Al | ocat e_Menory(&Syst em Menory, &pointer, 1000, NU_NO SUSPEND) ;

NU _Create_Task(&Task_0, “TASK 0", task_0, 0, NU_NULL, pointer, 1000, 1,
20, NU_PREEMPT, NU_START);

/* Create task 1. */

NU_Al | ocat e_Menory(&Syst em Menory, &pointer, 1000, NU_NO SUSPEND) ;
NU_Creat e_Task(&Task_1, “TASK 1", task_1, 0, NU_NULL, pointer, 1000, 10,
5, NU_PREEMPT, NU_START);

/* Create task 2. */

NU_Al | ocat e_Menory(&Syst em Menory, &pointer, 1000, NU_NO SUSPEND) ;
NU_Creat e_Task(&Task_2, “TASK 2", task_2, 0, NU_NULL, pointer, 1000,
10, 5, NU_PREEMPT, NU_START);

/* Create task 3. Note: task 4 uses the sane instruction area. */
NU_Al | ocat e_Menory(&Syst em Menory, &pointer, 1000, NU_NO SUSPEND) ;
NU _Create_Task(&Task_3, “TASK 3", task_3_and_4, 0, NU_NULL, pointer,
1000, 5, 0, NU _PREEMPT, NU_START);

/* Create task 4. Note that task 3 uses the sane instruction area.*/
NU_Al | ocat e_Menory(&Syst em Menory, &pointer, 1000, NU_NO_ SUSPEND);
NU _Create_Task(&Task_4, “TASK 4", task_3_and_4, 0, NU_NULL, pointer,
1000, 5, 0O, NU_PREEMPT, NU_START);

/* Create task 5. */

NU_Al | ocat e_Menory(&Syst em Menory, &pointer, 1000, NU_NO SUSPEND);

NU _Create_Task(&Task_5, “TASK 5", task_5, 0, NU_NULL, pointer, 1000, 7,
NU_PREEMPT, NU_START) ;

/* Create comuni cation queue. */

NU_Al | ocat e_Menory(&Syst em Menory, &pointer, 100*si zeof (UNSI GNED),
NU_NO_SUSPEND) ;

NU_Cr eat e_Queue(&ueue_0, “QUEUE 0", pointer, 100, NU_FIXED SIZE, 1,
NU_FI FO) ;

/* Create synchronization semaphore. */
NU_Cr eat e_Senmaphor e(&Semaphore_0, “SEM 0", 1, NU_FI FO;

/* Create event flag group. */
NU_Creat e_Event _G oup(&Event _G oup_0, “EVGROUPQ”);
}

100
101

102
103

104
105
106

107
108

Chapter 16 - Demo Application

/* Define task 0. Task O increments the Task_Tine variable every
18 clock ticks. Additionally, task O sets an event flag that
task 5 is waiting for, on each iteration of the l|oop. */

voi d task_O(UNSI GNED argc, VA D *argv)

{

STATUS st at us;

/* Access argc and argv just to avoid conpil ation warnings.*/

status = (STATUS) argc + (STATUS) argv;

/* Set the clock to 0. This clock ticks every 18 systemtiner ticks. */
Task_Time = 0;

whi | e(1)

/* Sleep for 18 tiner ticks. The value of the tick is programmable in
IND. ASM and is relative to the speed of the target system */
NU_S| eep(18);

/* Increnent the tine. */
Task_Ti me++;

/* Set an event flag to lift the suspension on task 5.*/
NU_Set Events(&Event _Group_0, 1, NU OR);

}

}

/* Define the queue sending task. Note that the only things that cause
this task to suspend are queue full conditions and the tine slice
specified in the configuration file. */

voi d task_1(UNSI GNED argc, VA D *argv)

{
STATUS status;
UNSI GNED Send_Message;

/* Access argc and argv just to avoid conpilation warnings. */
status = (STATUS) argc + (STATUS) argv;

/* Initialize the nmessage counter. */
Task_1_nessages_sent = O0;

/* Initialize the nmessage contents. The receiver wll
exam ne the nessage contents for errors. */
Send_Message = 0;

whi | (1)

279

Nucleus PLUS Reference Manual

109
110
111
112
113
114

115
116
117

118
119
120
121

/* Define the queue receiving task.

122
123

124
125
126
127
128
129

130
131

132
133

134
135

136
137

138
139
140
141
142
143
144

145
146
147

148
149
150
151
152

280

/* Send the nmessage to Queue_0, which task 2 reads from Note
that if the destination queue fills up this task suspends until

room becones avail able. */
status = NU Send_To_Queue(&Queue_0, &Send_Message, 1,
NU_SUSPEND) ;

/* Determine if the nessage was sent successfully. */
if (status == NU_SUCCESS)
Task_1_nessages_sent ++;

/* Modify the contents of the next message to send. */
Send_Message++;

}

Note that the only things that

cause this task to suspend are queue enpty conditions and the

time slice specified in the configuration file. */
void task_2(UNSIGNED argc, VO D *argv)

{

STATUS st at us;
UNSI GNED Recei ve_Message;
UNSI GNEDr ecei ved_si ze;
UNSI GNED nessage_expect ed;

/* Access argc and argv just to avoid conpilation warnings.
status = (STATUS) argc + (STATUS) argv;

/* Initialize the message counter. */
Task_2_nessages_received = 0;

/* Initialize the message error counter. */
Task_2_invalid_nessages = 0;

/* Initialize the message contents to expect. */
nessage_expected = O;

whi | e(1)
{

/* Retrieve a nessage from Queue_0, which task 1 wites to.
Note that if the source queue is enpty this task

suspends until sonething becones available. */

status = NU_Receive_From Queue(&Queue_0, &Receive_Message,
&recei ved_si ze, NU_SUSPEND);

/* Determine if the nessage was received successfully. */
if (status == NU_SUCCESS)
Task_2_nessages_recei ved++;

/* Check the contents of the message against what this task
is expecting. */

if ((received_size !'=1) ||

(Recei ve_Message ! = message_expected))

Task_2_inval i d_nessages++;

*/

1,

153
154
155
156

157
158
159
160
161

162
163
164

165
166

167
168
169
170
171

172
173
174
175
176

177
178
179

180
181
182
183
184

185
186
187
188
189

190
191

192
193

Chapter 16 - Demo Application

/* Mdify the expected contents of the next message. */
message_expect ed++;

}

}

/* Tasks 3 and 4 want a single resource. Once one of the tasks gets the
resource, it keeps it for 30 clock ticks before releasing it. During
this time the other task suspends waiting for the resource. Note that
both task 3 and 4 use the sanme instruction areas but have different
stacks. */

voi d task_3_and_4(UNSI GNED argc, VO D *argv)
{
STATUS st at us;

/* Access argc and argv just to avoid conpilation warnings. */
status = (STATUS) argc + (STATUS) argv;

/* Loop to allocate and deal |l ocate the resource. */
whi | e(1)
{

/* Allocate the resource. Suspend until it becomes available. */
status = NU_Obt ai n_Semaphor e(&Semaphore_0, NU_SUSPEND) ;

/* 1If the status is successful, show that this task owns the
resource. */

if (status == NU_SUCCESS)

{

Who_has_t he_resource = NU Current_Task_Pointer();

/* Sleep for 100 ticks to cause the other task to suspend on
the resource. */
NU_SI eep(100);

/* Rel ease the semaphore. */
NU_Rel ease_Semaphor e(&Semaphore_0) ;
}

}

}

/* Define the task that waits for the event to be set by task 0. */
voi d task_5(UNSI GNED argc, VA D *argv)

{
STATUS stat us;
UNSI GNED event _group;

/* Access argc and argv just to avoid conpilation warnings. */
status = (STATUS) argc + (STATUS) argv;

/* Initialize the event detection counter. */
Event _Detections = O;

281

Nucleus PLUS Reference Manual

194 /* Continue this process forever. */

195 while(l)

196

197 /* Wait for an event and consune it. */

198 status = NU Retrieve_Events(&Event_Goup_0, 1, NU OR CONSUME,
199 &event _group, NU_SUSPEND);

200 /* If the status is okay, increnent the counter. */
201 if (status == NU_SUCCESS)

202 Event_Detections++;

203 }

204 }

282

Appendix

~ Nucleus PLUS Constants

Nucleus PLUS Reference Manual

This appendix contains all Nucleus PLUS constants referenced in Chapter 4 of this manual
(Nucleus PLUS Services). Note that two listings are provided. The first listing is ordered
alphabetically, the second numerically.

Nucleus PLUS Constants (Alphabetical Listing)

284

Name Decimal Value Hex Value
NU_ALLOCATE_MEMORY_| D 47 2F
NU_ALLOCATE _PARTI TI ON_I D 43 2B
NU_AND 2 2
NU_AND_CONSUME 3 3
NU_BROADCAST_TO MAI LBOX_I D 16 10
NU_BROADCAST _TO PI PE_|I D 30 1E
NU_BROADCAST_TO QUEUE | D 23 17
NU_CHANGE_PREEMPTI ON_| D 11 B
NU_CHANGE_PRI ORI TY_I D 10 A
NU_CHANGE_TI ME_SLI CE_I D 65 41
NU_CONTROL_SI GNALS_| D 49 31
NU_CONTROL_TI MER_| D 58 3A
NU_CREATE_DRI VER | D 60 3C
NU_CREATE_EVENT_GROUP_I D 37 25
NU_CREATE HI SR | D 54 36
NU_CREATE_MAI LBOX_I D 12 c
NU_CREATE_MEMORY_POOL_I D 45 2D
NU_CREATE_PARTI TI ON_POOL_| D 41 29
NU_CREATE_PI PE_| D 25 19
NU_CREATE_QUEUE_| D 18 12
NU_CREATE_SEMAPHORE | D 32 20
NU_CREATE_TASK_| D 2 2
NU_CREATE_TI MER | D 56 38
NU_DEALLOCATE_MEMORY_| D 48 30
NU_DEALLOCATE_PARTI TI ON_I D 44 2C
NU_DELETE DRI VER | D 61 3D
NU_DELETE_EVENT_GROUP_I D 38 26
NU _DELETE _H SR | D 55 37
NU_DELETE_MAI LBOX_| D 13 D
NU_DELETE_MEMORY_POOL_I D 46 2E
NU_DELETE_PARTI TI ON_POOL_| D 42 2A
NU_DELETE_PI PE_| D 26 1A
NU_DELETE_QUEUE | D 19 13
NU_DELETE_SEVAPHORE_| D 33 21
NU_DELETE_TASK_I| D 3 3
NU _DELETE_TI MER | D 57 39
NU_DI SABLE | NTERRUPTS Port Specific Port Specific
NU_DI SABLE_TI MER 4 4
NU_DRI VER_SUSPEND 10 A

Appendix A - Nucleus PLUS Constants

Name Decimal Value Hex Value
NU_ENABLE_| NTERRUPTS Port Specific Port Specific
NU_ENABLE_TI MER 5 5
NU_EVENT_SUSPEND 7 7
NU_FALSE 0 0
NU_FI FO 6 6
NU_FI NI SHED 11 B
NU_FI XED SI ZE 7 7
NU_MAI LBOX_SUSPEND 3 3
NU_MEMORY_SUSPEND 9 9
NU_NO_PREEMPT 8 8
NU_NO_START 9 9
NU_NO_SUSPEND 0 0
NU_NULL 0 0
NU_OBTAI N_SEMAPHORE | D 35 23
NU_OR 0 0
NU_OR_CONSUME 1 1
NU_PARTI TI ON_SUSPEND 8 8
NU_PI PE_SUSPEND 5 5
NU_PREEMPT 10 A
NU PRIORITY 11 B
NU_PURE_SUSPEND 1 1
NU_QUEUE_SUSPEND 4 4
NU_READY 0 0
NU_RECEl VE_FROM MAI LBOX_I D 17 11
NU_RECEl VE_FROM PI PE_I D 31 1F
NU_RECEl VE_FROM QUEUE | D 24 18
NU_RECEI VE_SI GNALS | D 50 32
NU REG STER LISR ID 53 35
NU_REG STER S| GNAL_HANDLER | D 51 33
NU_RELEASE SEMAPHORE | D 36 24
NU_RELI NQUI SH | D 8 8
NU_REQUEST DRI VER | D 62 3E
NU_RESET_MAI LBOX_I D 14 E
NU_RESET_PI PE I D 27 1B
NU_RESET_QUEUE | D 20 14
NU_RESET_SEMAPHORE | D 34 22
NU_RESET_TASK | D 4 4
NU_RESET_TI MER | D 59 3B
NU_RESUME DRI VER | D 63 3F
NU_RESUME_TASK_| D 6 6
NU_RETRI EVE_EVENTS_| D 40 28
NU_SEMAPHORE_SUSPEND 6 6
NU_SEND_SI GNALS | D 52 34
NU_SEND_TO FRONT_OF QUEUE | D 21 15

285

Nucleus PLUS Reference Manual

Name Decimal Value Hex Value
NU_SEND TO FRONT_OF _PI PE_I D 28 1C
NU_SEND_TO MAI LBOX_I D 15 F
NU_SEND_TO PI PE_I D 29 1D
NU_SEND_TO QUEUE_I D 22 16
NU_SET_EVENTS_I D 39 27
NU_SLEEP_| D 9 9
NU_SLEEP_SUSPEND 2 2
NU_START 12 C
NU_SUCCESS 0 0
NU_SUSPEND Ox FFFFFFFFUL FFFFFFFF
NU_SUSPEND DRI VER | D 64 40
NU_SUSPEND_TASK_| D 7 7
NU_TERM NATE_TASK_| D 5 5
NU_TERM NATED 12 C
NU_TRUE 1 1
NU_USER | D 1 1
NU_VARI ABLE SI ZE 13 D
Nucleus PLUS Constants (Numerical Listing)
Name decimal Value {ex Value

NU_ENABLE_| NTERRUPTS

Port Specific

Port Specific

NU_DI SABLE_| NTERRUPTS

Port Specific

Port Specific

NU_FALSE

NU_NO_SUSPEND

NU_NULL

NU OR

NU_READY

NU_SUCCESS

NU OR_CONSUNE

NU_PURE_SUSPEND

NU_TRUE

NU USER | D

NU_AND

NU_CREATE TASK_| D

NU_SLEEP_SUSPEND

NU_AND_CONSUMVE

NU DELETE TASK_| D

NU_MAI LBOX_SUSPEND

NU DI SABLE_TI MER

NU_QUEUE_SUSPEND

NU RESET_TASK_| D

NU_ENABLE TI MER

QB[R DR|IWW|IW|ININ|IN|FP(P|P(P|O|O|O|O|O|O

QB[R DR|IWW|IW|ININ|IN|FP(P|RP(P|O|O|O|O|O|O

286

Appendix A - Nucleus PLUS Constants

Name Decimal Value Hex Value
NU_TERM NATE TASK_ | D 5 5
NU_FI FO 6 6
NU_RESUME_TASK_| D 6 6
NU_SEMAPHORE_SUSPEND 6 6
NU_EVENT_SUSPEND 7 7
NU_FI XED_SI ZE 7 7
NU_SUSPEND TASK_| D 7 7
NU_NO PREEMPT 8 8
NU_PARTI TI ON_SUSPEND 8 8
NU_RELI NQUI SH | D 8 8
NU_MEMORY_SUSPEND 9 9
NU_NO START 9 9
NU_SLEEP_ | D 9 9
NU_CHANGE PRI ORI TY_I D 10 A
NU_DRI VER_SUSPEND 10 A
NU_PREEMPT 10 A
NU_CHANGE_PREEMPTI ON_| D 11 B
NU_FI NI SHED 11 B
NU_PRIORITY 11 B
NU_CREATE_MAI LBOX_| D 12 [
NU_START 12 C
NU_TERM NATED 12 C
NU_DELETE_MAI LBOX_| D 13 D
NU_VARI ABLE SI ZE 13 D
NU_RESET_MAI LBOX_I D 14 E
NU_SEND_TO MAI LBOX_I D 15 F
NU_BROADCAST_TO MAI LBOX_| D 16 10
NU_RECEl VE_FROM MAI LBOX_I D 17 11
NU_CREATE_QUEUE_| D 18 12
NU_DELETE_QUEUE_| D 19 13
NU_RESET_QUEUE_| D 20 14
NU_SEND_TO FRONT_OF QUEUE | D 21 15
NU_SEND_TO QUEUE | D 22 16
NU_BROADCAST_TO QUEUE | D 23 17
NU_RECEl VE_FROM QUEUE | D 24 18
NU_CREATE_PI PE_| D 25 19
NU_DELETE_PI PE_| D 26 1A
NU_RESET_PI PE_I D 27 1B
NU_SEND_TO FRONT_OF Pl PE_| D 28 1C
NU_SEND_TO PI PE_I D 29 1D
NU_BROADCAST _TO PI PE_|I D 30 1E
NU_RECEl VE_FROM PI PE_I D 31 1F
NU_CREATE_SEMAPHORE | D 32 20
NU_DELETE_SEMAPHORE | D 33 21
NU_RESET_SEMAPHORE | D 34 2

287

Nucleus PLUS Reference Manual

Name Decimal Value Hex Value
NU_RELEASE_SEMAPHORE | D 36 24
NU_CREATE_EVENT_GROUP_I D 37 25
NU_DELETE_EVENT_GROUP_I D 38 26
NU_SET_EVENTS_ I D 39 27
NU_RETRI EVE_EVENTS_| D 40 28
NU_CREATE_PARTI TI ON_POOL_I D 41 29
NU_DELETE_PARTI TI ON_POOL_I D 42 2A
NU_ALLOCATE_PARTI TI ON_I D 43 2B
NU_DEALLOCATE_PARTI TI ON_I D 44 2C
NU_CREATE_MEMORY_POCOL_I D 45 2D
NU_DELETE_MEMORY_POCOL_I D 46 2E
NU_ALLOCATE_MEMORY_I D 47 2F
NU_DEALLOCATE_MEMORY_| D 48 30
NU_CONTROL_SI GNALS_| D 49 31
NU_RECEI VE_SI GNALS_| D 50 32
NU_REG STER SI GNAL_HANDLER | D 51 33
NU_SEND_SI GNALS_| D 52 34
NU_REG STER LI SR | D 53 35
NU_CREATE_HI SR | D 54 36
NU_DELETE_HI SR | D 55 37
NU_CREATE_TI MER | D 56 38
NU_DELETE_TI MER | D 57 39
NU_CONTROL_TI MER | D 58 3A
NU_RESET_TI MER | D 59 3B
NU_CREATE_DRI VER | D 60 3C
NU_DELETE_DRI VER | D 61 3D
NU_REQUEST DRI VER | D 62 3E
NU_RESUME_DRI VER | D 63 3F
NU_SUSPEND DRI VER | D 64 40
NU_CHANGE_TI ME_SLI CE 65 41
NU_SUSPEND Ox FFFFFFFFUL FFFFFFFF

288

Appendix

- Error Conditions

Nucleus PLUS Reference Manual

This appendix contains all Nucleus PLUS fatal system error constants, and error codes. If
a fatal system error occurs, one of these constants is passed to the fatal error handling
function ERC_Syst em Error.

If the system error is NU_STACK_OVERFLOW the currently executing thread’s stack is too
small. The current thread can be indentified by examination of the global variable
TCD Current _Thread. This contains the pointer to the current thread’s control block.

If the system error is NU_UNHANDLED | NTERRUPT, an interrupt was received that does
not have an associated LISR. The interrupt vector number that caused the system error is
stored in the global variable TCD_Unhandl ed_I nt er r upt .

Nucleus PLUS Fatal System Errors

Name Decimal Value Hex Value
NU_ERROR_CREATI NG TI MER HI SR 1 1
NU_ERROR_CREATI NG TI MER TASK 2 2
NU_STACK_OVERFLOW 3 3
NU_UNHANDLED | NTERRUPT 4 4

Nucleus PLUS Error Codes

Name Decimal Value Hex Value
NU_END OF LOG -1 FFFFFFFF
NU_GROUP_DELETED -2 FFFFFFFE
NU_| NVALI D_DELETE -3 FFFFFFFD
NU_| NVALI D_DRI VER -4 FFFFFFFC
NU_I NVALI D_ENABLE -5 FEFFEEEB
NU_| NVALI D_ENTRY -6 FFFFFFFA
NU_I NVALI D_FUNCTI ON -7 FFFFFFF9
NU_I NVALI D_GROUP -8 FFFFFFFS
NU_| NVALI D HI SR -9 FFFFFFF7
NU_I NVALI D_NMAI LBOX -10 FFFFFFF6
NU_I NVALI D_MEMORY -11 FFEFFFF5
NU_I NVALI D_MESSAGE -12 FFEFFFF4
NU_I NVALI D_OPERATI ON -13 FFFFFFF3
NU_I NVALI D_PI PE -14 FEEFFFF2
NU_I NVALI D PO NTER -15 FFEFFFF1
NU_I NVALI D_POOL -16 FFFFFFFO

290

Appendix B - Error Conditions

Name Decimal Value Hex Value
NU_| NVALI D_PREEMPT -17 FFFFFFEF
NU_| NVALI D PRIORI TY -18 FFFFFFEE
NU_I NVALI D_QUEUE -19 FFFFFFED
NU_| NVALI D_RESUME -20 FFFFFFEC
NU_| NVALI D_SEMAPHORE -21 FFFFFFEB
NU_| NVALI D_SI ZE -22 FFFFFFEA
NU_| NVALI D_START -23 FFFFFFE9
NU_| NVALI D_SUSPEND -24 FFFFFFE8
NU_| NVALI D TASK -25 FFFFFFE7
NU_| NVALI D Tl MER -26 FFFFFFE6
NU_| NVALI D VECTOR -27 FFFFFFES
NU_MAI LBOX_DELETED -28 FFEFFFE4
NU_MAI LBOX_EMPTY -29 FFFFFFE3
NU_MAI LBOX_FULL -30 FFFFFFE2
NU_MAI LBOX_RESET -31 FFFFFFEL
NU_NO_MEMORY -32 FFFFFFEO
NU_NO MORE LI SRS -33 FFFFFFDF
NU_NO_PARTI TI ON -34 FFFFFFDE
NU_NOT_DI SABLED -35 FFFFFFDD
NU_NOT_PRESENT -36 FFFFFFDC
NU_NOT_REG STERED -37 FFFFFFDB
NU_NOT_TERM NATED -38 FFFFFFDA
NU_PI PE_DELETED -39 FFFFFFDO
NU_PI PE_EMPTY -40 FFFFFFD8
NU_PI PE_FULL -41 FFFFFFD7
NU_PI PE_RESET -42 FFFFFFD6
NU_POOL_DELETED -43 FFFFFFD5
NU_QUEUE_DELETED -44 FFFFFFD4
NU_QUEUE_EMPTY -45 FFFFFFD3
NU_ QUEUE_FULL -46 FFFFFFD2
NU_QUEUE_RESET -47 FFFFFFDL
NU_SEMAPHORE_DELETED -48 FFFFFFDO
NU_SEMAPHORE RESET -49 FFFFFFCF
NU_TI MEQUT -50 FFFFFFCE
NU_UNAVAI LABLE -51 FFFFFFCD

291

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
Ics

Gra

292

E Appendix

_I/Q Driver Request Structures

293

Nucleus PLUS Reference Manual

Nucleus PLUS I/O Driver Constants

Name Decimal Value Hex Value
NU_| O ERROR -1 FFFFFFFF
NU_I NI TI ALI ZE 1 1
NU_ASSI GN 2 2
NU_RELEASE 3 3
NU_I NPUT 4 4
NU_QUTPUT 5 5
NU_STATUS 6 6
NU_TERM NATE 7 7
Nucleus PLUS I/O Driver C Structures
/* Define I/Odriver request structures. */
struct NU_I NI TI ALI ZE_STRUCT
{
VA D *nu_i o_addr ess; /* Base | O address */
UNSI GNED nu_|l ogical _units; /* Nunber of logical units */
VA D *nu_nenory; /* Ceneric nenory pointer */
I NT nu_vector; /* Interrupt vector number */
b
struct NU_ASSI GN_STRUCT
UNSI GNED nu_l ogical _unit; /* Logical unit nunber */
I NT nu_assign_info; /* Additional assign info */
IE
struct NU_RELEASE STRUCT
UNSI GNED nu_| ogi cal _unit; /* Logical unit nunber */
I NT nu_rel ease_i nf o; /* Additional release info */
b
struct NU_I NPUT_STRUCT
{
UNSI GNED nu_| ogi cal _unit; /* Logi cal unit number */
UNSI GNED nu_of f set; /* Offset of input */
UNSI GNED nu_r equest _si ze; /* Requested input size */
UNSI GNED nu_act ual _si ze; /* Actual input size */
VO D *nu_buffer_ptr; /* I nput buffer pointer */
b
struct NU_COUTPUT_STRUCT
{
UNSI GNED nu_| ogi cal _unit; /* Logi cal unit nunmber */
UNSI GNED nu_of f set; /* Offset of output */
UNSI GNED nu_r equest _si ze; /* Requested output size */
UNSI GNED nu_act ual _si ze; /* Actual output size */
VO D *nu_buffer_ptr; /* Qutput buffer pointer */
IE

294

Appendix C - NO Driver Request Structures

struct NU_STATUS STRUCT

UNSI GNED nu_| ogi cal _unit; /* Logi cal unit nunmber */
VO D *nu_extra_status; /* Additional status ptr */
IE
struct NU_TERM NATE_STRUCT
UNSI GNED nu_| ogi cal _unit; /* Logical unit nunber */
b
typedef struct NU DRI VER REQUEST_STRUCT
{
I NT nu_functi on; /* 1/O request function */
UNSI GNED nu_ti meout; /* Timeout on request */
STATUS nu_st at us; /* Status of request */
UNSI GNED nu_suppl enent al ; /* Suppl enental information */
VO D *nu_suppl emental _ptr; /* Suppl enental info pointer */
[* Define a union of all the different types of request

structures. */
uni on NU_REQUEST | NFO_UNI ON

{
struct NU_INTIALIZE STRUCT nu_initialize;
struct NU_ASSI GN_STRUCT nu_assi gn;
struct NU_RELEASE STRUCT nu_rel ease;
struct NU_I NPUT_STRUCT nu_i nput ;
struct NU_OUTPUT_STRUCT nu_out put ;
struct NU_STATUS_ STRUCT nu_st at us;

struct NU_TERM NATE_ STRUCT nu_t er m nat e;
} nu_request _info;

} NU_DRI VER REQUEST;

295

Nucleus PLUS Reference Manual

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

296

Appendix

Techniques for Conserving Memory

297

Nucleus PLUS Reference Manual

The Nucleus PLUS kernel was designed with an emphasis on speed, and on providing
ample features and capacities for a broad range of applications. There are applications,
however, where RAM space requirements must be minimized, even if this means some
penalty in performance, or isolated reduction in functionality.

Our customers have discovered a number of techniques that can be used to reduce the
RAM space required by Nucleus, depending on the specific user application. Some
involve a trade-off in performance, others reduce the functionality of some feature. In
each case, it is up to the user to determine if any of these techniques are appropriate for
their application. We have investigated these techniques ourselves, some in considerable
depth. We found no reason to expect any of them to cause problems, if applied as
described.

The generic Nucleus PLUS code benefits from a refinement process resulting from
extended usage by our customer base. Every version of Nucleus PLUS shares about 95%
of its C code with every other version, regardless of target processor. Even a customer
working with a recently developed new processor enjoys the advantage of using Nucleus
PLUS code already proven by many previous customers. The techniques discussed in this
Appendix have not necessarily enjoyed the benefit of this long-term refinement process.

Data Initialization

By default, I NC I nitialize calls functions to initialize the data structures for every
feature Nucleus offers. Even if a feature is not used, e.g. Mailboxes, its associated data
structures will be created in RAM if its data initialization is done in I NC I niti al i ze.
These data structures include the List of Created Mailboxes, the Count of Total Mailboxes,
and the Created Mailbox Protection Structure. No actual Mailboxes are created until the
application makes a call to NU_Create_Mil box. This pattern holds true for other
features as well. To avoid creating unused data structures, remove from | NC_I ni ti al i ze
the initialization for any features not used by the application.

NU_MAX_LISRS

The default size of this parameter, found i n NUCLEUS. H, is the total number of interrupt
vectors supported by the processor. It determines the size of two arrays, each of which
must have an entry for every interrupt that can be used. The size may be reduced if some
continuous group of interrupts at the end of the vector table is not used by the system.
Since one of the arrays is accessed using the vector number as an index, the total must
include even the unused interrupt vectors that come before the last one subject to use by
the system.

Consider an example where a processor supports 256 interrupt sources, but the user’s
system will only have potential interrupt sources for, at most, 20 of them. If the usable
interrupts are 0-14, 70-73, and 127, NU_MAX_LI SRS can be reduced to 128.

298

Appendix D - Techniques for Conserving Memory

TC_PRIORITIES

If an application does not require the full 256 separate task priorities, this parameter, in
TC _DEFS. H can be reduced accordingly. The priority levels available to tasks will then
be reduced. Only those in a range beginning at 0 and extending to one less than the new
size value can be used.

HISR Stack Sharing

It is permissible for HISRs of the same priority to share a single stack. Simply give the
same location for stack space every time a HISR of a given priority is created. Make sure
the same size value is used in every case. Typically, an application needs to use at least
two HISR stacks, one for application HISRs at a minimum of one HISR priority level, and
one for the Timer HISR.

To get by with only one HISR stack for the entire system would involve using the same
HISR priority for all application HISRs as for the Timer HISR, but it can be done. Use the
global variables _TMD_HI SR Stack_Ptr, _TMD_HI SR_St ack_Si ze, and
_TMD_HI SR Priority for stack location, stack size, and HISR priority, respectively, in
each application call to NU_Cr eat e_Hl SR.

TCD_Lowest Set Bit

The lookup table TCD Lowest _Set_Bit, defined in TCD. C is normally copied from
ROM to RAM. It is accessed during task switching, and quicker access from RAM is
desirable. This table is never changed, however. It can be made a ‘const’ type, to avoid
copying it into RAM, and save 256 longwords there. The penalty is slower access to the
table, in ROM, during task switches. Take advantage of this only if slower task switching
can be tolerated.

299

Nucleus PLUS Reference Manual

Using a Smaller INT Option

There are a few platforms supported by Nucleus PLUS where an ‘int’ size less than the
processor’s default ‘int’ size is available as a compiler option. This offers potential savings
in data space, but this feature cannot be used directly with Nucleus PLUS itself. The
Nucleus PLUS INT data type is mapped to the compiler’s ‘int’ type (in NUCLEUS. H). The
processor-specific assembler files are written assuming an INT the size of the default ‘int’.

Changing the size of INT would result in incompatibility between the assembly and the
‘C’ code in Nucleus PLUS. Application source code cannot be compiled with a different
‘int” size than the Nucleus PLUS code. It is possible, however, to take advantage of this
compiler feature for the user application, without actually mixing incompatible type sizes.
To do so, map the Nucleus PLUS type INT, and any other Nucleus types originally
mapped to ‘int’, to some other data type the same size as the compiler’s default ‘int’ size.
Nucleus PLUS will then be using no ‘int’ type data at all, and the compiler’s optional
smaller ‘int’ can be used for the rest of the application.

300

	Nucleus PLUS Reference Manual
	Chapter 1 - Introduction
	About Nucleus PLUS
	Real-Time Applications
	Why Nucleus PLUS is Needed

	Chapter 2 – Getting Started
	Application Development
	Installing Nucleus PLUS
	How to Use Nucleus PLUS
	Application Initialization
	Target System Considerations
	Configuration Options
	System Initialization
	Memory Usage
	Execution Threads
	Initialization
	System Error
	Scheduling Loop
	Task
	Signal Handler
	User ISR
	LISR
	HISR

	Chapter 3 – Task Control
	Introduction
	Task States
	Preemption
	Relinquish
	Time Slicing
	Dynamic Creation
	Determinism
	Stack Checking
	Task Information
	Priority

	Function Reference

	Chapter 4 – Dynamic Memory
	Introduction
	Suspension
	Dynamic Creation
	Determinism
	Dynamic Memory Pool Information
	Function Reference
	Example Source Code

	Chapter 5 – Partition Memory
	Introduction
	Suspension
	Dynamic Creation
	Determinism
	Partition Information

	Function Reference
	Example Source Code

	Chapter 6 - Mailboxes
	Introduction
	Suspension
	Broadcast
	Dynamic Creation
	Determinism
	Mailbox Information

	Function Reference
	Example Source Code

	Chapter 7 -Queues
	Introduction
	Message Size
	Suspension
	Broadcast
	Dynamic Creation
	Determinism
	Queue Information

	Function Reference
	Example Source Code

	Chapter 8 - Pipes
	Introduction
	Message Size
	Suspension
	Broadcast
	Dynamic Creation
	Determinism
	Pipe Information

	Function Reference
	Example Source Code

	Chapter 9 - Semaphores
	Introduction
	Suspension
	Deadlock
	Priority Inversion
	Dynamic Creation
	Determinism
	Semaphore Information

	Function Reference
	Example Source Code

	Chapter 10 – Event Groups
	Introduction
	Suspension
	Dynamic Creation
	Determinism
	Event Group Information

	Function Reference
	Example Source Code

	Chapter 11 - Signals
	Introduction
	Signal Handling Routine
	Enable Signal Handling
	Clearing Signals
	Multiple Signals
	Determinism

	Function Reference
	Example Source Code

	Chapter 12 - Timers
	Introduction
	Ticks
	Margin of Error
	Hardware Requirement
	Continuous Clock
	Task Timers
	Application Timers
	Re-Scheduling
	Enable/Disable
	Dynamic Creation
	Determinism
	Timer Information

	Function Reference
	Example Source Code

	Chapter 13 - Interrupts
	Introduction
	Protection
	Low-Level ISR
	High-Level ISR
	HISR Information
	Interrupt Latency
	Application Interrupt Lockout
	Direct Vector Access

	Function Reference
	Managed ISRs
	Unmanaged ISRs

	Chapter 14 – System Diagnostics
	Introduction
	Error Management
	System History
	Version Information
	License Information
	Building the PLUS Library

	Function Reference
	Example Source Code

	Chapter 15 – I/O Drivers
	Introduction
	Common Interface
	Driver Contents
	Protection
	Suspension
	Dynamic Creation
	Driver Information

	Function Reference
	Implementing an I/O Driver
	Actual Driver Requests
	Initialization
	Assign
	Release
	Input
	Output
	Status
	Terminate
	Driver Implementation
	Example Driver

	Chapter 16 – Demo Application
	Example Overview
	Example System

	Appendix A –Nucleus PLUS Constants
	Nucleus PLUS Constants (Alphabetical Listing)
	Nucleus PLUS Constants (Numerical Listing)

	Appendix B – Error Conditions
	Nucleus PLUS Fatal System Errors
	Nucleus PLUS Error Codes

	Appendix C - I/O Driver Request Structures
	Nucleus PLUS I/O Driver Constants
	Nucleus PLUS I/O Driver C Structures

	Appendix D – Techniques for Conserving Memory
	Data Initialization
	NU_MAX_LISRS
	TC_PRIORITIES
	HISR Stack Sharing
	TCD_Lowest_Set_Bit
	Using a Smaller INT Option

