Virtuoso user guide: book 1
for Version 4.1

Introduction to Virtuoso
and crash course in programming
Virtuoso applications

VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

This page intentionally left blank

1'2 VUG41R200B1 01999 Eonic Systems, Inc

Virtuoso user guide: book 1

Contents

This book starts you off working with Virtuoso. If you finish it, you'll have a
good grasp of what it takes to write Virtuoso applications.

1 Introduction 1-5
1.1 What you get with Virtuoso 1-5
1.2 License 1-6
1.3 Help for Virtuoso application developers 1-6
1.4 Virtuoso tools 1-8

1.4.1 Virtuoso Project Manager 1-8
1.4.2 Virtuoso Host Server 1-8
1.4.3 Virtuoso Task Level Debugger 1-9
1.4.4 Virtuoso Tracing Monitor 1-9
1.45 Host Extension Kit (HEK) 1-9
1.5 Glossary of terms 1-11

2 Crash course 1-33
2.1 The key points 1-33
2.2 Preparation 1-34

2.2.1 Where to find the example files 1-34
2.2.2 Preparing source files 1-34
2.3 Helloworld... 1-35
2.4 Inter-task communication 1-42
2.5 Inter-processor communication 1-49
2.6 Summary 1-54
2.7 Other examples 1-55
2.7.1 Example code 1-55
2.7.2 Example applications 1-57
2.8 Some programming hints 1-61
2.8.1 General 1-61
2.8.2 Links and netlinks 1-64
2.8.3 Drivers 1-65
2.9 Services that do not cause a task switch 1-67

VUG41R200B1 [11999 Eonic Systems, Inc 1'3

Virtuoso user guide: book 1

This page intentionally left blank

1'4 VUG41R200B1 01999 Eonic Systems, Inc

Virtuoso user guide: book 1

Chapter

1 Introduction

Book 1 of this Virtuoso user guide is for new users. It starts with a list of
the documents and other help available to you as a Virtuoso user and a
customer of Eonic Systems.

If you haven't installed Virtuoso yet, it's probably a good idea to do it now,
so you can follow what's in the guide. The Virtuoso installation guide will
help you install it correctly.

In chapter 2, there is a crash course in developing simple applications. At
the end of the course, you'll have code that uses some of the more basic,
but interesting, features of Virtuoso, and it will work!

You might want to look at the other books in the user guide:
» Book 2 is a programming reference
» Book 3 contains configuration and file information

» Book 4 is a processor supplement, which contains essential
programming and configuration information for the processor you are
using

It is essential that you read book 4!
Finally, if this is your first taste of Virtuoso, you might want to browse
through the glossary at the end of this chapter. The glossary is a list of

terms that you may not be familiar with, or which are used in a specific way
in Virtuoso.

1.1 What you get with Virtuoso

* License details
» Virtuoso installation guide

* Virtuoso user guide with a processor supplement describing how
Virtuoso works with your specific processor/board (if it is a board we
support)

* CD containing Virtuoso software, examples and documentation

VUG41R200B1 [11999 Eonic Systems, Inc 1'5

License

1.2 License

Virtuoso will not run on a networked system without the license manager
software. See the Virtuoso installation guide for details.

1.3 Help for Virtuoso application
developers

There are several kinds of help available for you if you're developing
applications with Virtuoso.

Online help

There are help files for all Virtuoso components, including the kernel
services. The help files are in the VIRTDIR\bin folder and are accessible
from Virtuoso tool windows using the Help option and the F1 key.

Hard copies of the guides
These guides are included:
» Virtuoso installation guide

* Virtuoso user guide
Book 1 Introduction and crash course
Book 2 General programming reference
Book 3 Configuration and file reference
Book 4 Board-specific programming reference

* Virtuoso Host Extension Kit (HEK) user guide
This is included only if you request the HEK

Soft copies of the guides

Acrobat versions of the user guides are in the VIRTDIR\docs folder. You
will find a self-extracting archive of the Acrobat reader in the
VIRTDIR\Acrobat folder.

1'6 VUG41R200B1 01999 Eonic Systems, Inc

Virtuoso user guide: book 1

Eonic support

If you have a problem, please try the help files or user guides first. If they
can't help, you can call on Eonic support. Contact details are on page 2 of
this guide and in the help files. We will acknowledge receipt of your problem
report, and will normally reply within 1 working day. Before you contact us,
make sure you have these files ready to describe or to send to us:

» project file (.vpf)
e NLIfile (.nli)
» source code (including C and header files)

Please get the information for this form. We use the form in our problem
tracking system — filling it out will help us to solve your problem quicker.

About you:
Your name
Your organization

About the product you have a problem with:

Name

Version Serial number
About your host OS

Name Version

About your DSP hardware
Vendor/board name

No of processors

Links

Interface

A brief description of the problem

Error messages

VUG41R200B1 [11999 Eonic Systems, Inc 1'7

Virtuoso tools

1.4 Virtuoso tools

As an application developer, you will be interested in these Virtuoso tools:
e Virtuoso Project Manager (VPM)
* Virtuoso Host Server
» Virtuoso Task Level Debugger
* Virtuoso Tracing Monitor
» Virtuoso Host Extension Kit (if ordered)

The Eonic admin, control and query options that you'll find installed relate to
license use. See the Virtuoso installation guide for details.

1.4.1 Virtuoso Project Manager

The Virtuoso Project Manager is mainly for creating and editing Virtuoso
project files (VPFs). These are the software configuration files you need to
supply with the source code in order to generate a Virtuoso application.
VPFs replace the sysdef files used in previous versions of Virtuoso.

You can also use the project manager to:

» edit source code, using the built-in editor or another one of your
choice

e build Virtuoso applications

« call the Virtuoso Host Server to download and run the completed
application

See book 2 of the user guide for more details of the project manager.

1.4.2 Virtuoso Host Server

You use the Virtuoso Host Server to download your application to the target
board(s) and execute it. The Host Server can also accept requests for host
services from the application running on the target processors (for standard
I/0 or graphics output for example). See book 2 of the user guide for more
details.

1'8 VUG41R200B1 01999 Eonic Systems, Inc

Virtuoso user guide: book 1

If you are writing a hostless application, you can still develop it on your PC
with the Host Server. When development is complete, a small edit of the
[root]netload function will make it a hostless system. See “ROM booting” in
book 3 for more details.

1.4.3 Virtuoso Task Level Debugger

With the Virtuoso Task Level Debugger, an application running in debug
mode can be paused to take a snapshot of the system objects. The
information provided can help you find out if the application is running
efficiently.

Each tab in the debugger window monitors usage of a class of system
objects, such as tasks. The task monitor shows the stack usage of all the
tasks running on the target board at the point the application was stopped.
You'll find the debugger great for looking at resource and queue usage
when your application appears to hang or run slower than you want.

See book 2 of the user guide for more detalils.

1.4.4 Virtuoso Tracing Monitor

While the application is running in debug mode, information about
semaphore signaling, resource locking and other system operations is
saved in a circular buffer. When the application is paused, this information
is displayed by the Virtuoso Tracing Monitor. You can see the duration of all
transactions occurring in the system, and the connections between them.
The transactions are grouped by node, by task and by time.

The Tracing Monitor is installed as part of the Task Level Debugger. The
buffer size for the Tracing Monitor, and the types of transactions it records
are set in the project file.

See book 2 of the user guide for more detalils.

1.4.5 Host Extension Kit (HEK)

If you want to extend the functionality of an existing Host Server, you need
to write a host service module using the Host Extension Kit (HEK). See the
HEK Manual for more details.

VUG41R200B1 [11999 Eonic Systems, Inc 1'9

Virtuoso tools

You can use the HEK to:
» port the Virtuoso Host Server to different host OS'’s
» write board support packages (BSPs)
* add host service modules (HSMs)
e integrate the Host Server into an application

The HEK is supplied free of charge to Virtuoso customers, but it is not part
of the standard Virtuoso package, and must be ordered separately.

For more information, contact us. Contact details are on page 2 of this user
guide.

1'10 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

1.5 Glossary of terms

Application kernel

Formerly known as the microkernel.

The application kernel provides the main C programming API for Virtuoso,
offering a number of services and data structures for use by tasks. The
application kernel is a process controlled by the system kernel.

Architecture file

Also known as a linker command file, linker description file or linker
definition file.

You must create an architecture file to support your application. The
architecture file defines the layout, distribution and heap size for the
processor’'s memory.

For initial testing, you can copy any architecture file from the Virtuoso
examples folder, but an optimal configuration for a particular application can
only be reached by trial and error

See book 3 of the user guide for an example of an architecture file.

Blocking

Putting in a waiting state, either by descheduling a task or by putting it in a
queue waiting for a system event.

Board drivers

The target boards Virtuoso supports are listed in the Virtuoso Certified
Configuration (VCC) list — check the Eonic web site http://www.eonic.com/
or mail info@eonic.com for the latest list.

Unfortunately it is not possible to make an installation procedure that will
work with all boards. The VCC list shows whether to use a vendor driver or
the Eonic-supplied WinRT driver.

VUG41R200B1 [11999 Eonic Systems, Inc 1'11

http://www.eonic.com/
mailto:info@eonic.com

Glossary of terms

Board support package

Board support packages are used for interfacing Virtuoso DSP systems
with the Virtuoso Host Server.

Eonic Systems already supports many target boards from companies such
as Blue Wave Systems, Tl and others — check the Eonic web site
http://www.eonic.com/ or mail info@eonic.com for the latest list. However, if
you are using a less common target board, or you are designing your own,
you may have to write a board support package (BSP). The BSP contains
information for direct booting.

The most important decision when writing a BSP is choosing the method of
transferring data between the host and the target. Boards usually provide
either dual-port RAM or a fifo attached to a processor link for host I/0. A
new BSP using either of these methods can easily be produced using
Eonic’s Host Extension Kit (HEK).

The BSP consists of two sections, with part running on the target and part
running on the host. The host code needs to be written in the form of new
C++ classes that are derived from base classes provided by Eonic. Only a
few virtual functions need to be implemented for these new classes of the
custom board: the functions are specified in the template source code
provided. On the target side, the BSP writer needs to generate two new C
functions and an interrupt handler. Source code examples for the target
functions are also provided in the HEK package.

Board vendor utilities

Utilities provided by the manufacturer of the board. These usually include
drivers for accessing the board, a C library for use in your own host
programs, monitoring and testing software, and software to download
executables onto the board.

Bootlink

A description of a link between two processors, A and B, that can be used
to boot processor B when only processor A is connected to the boot device
(JTAG or host). For example, SHARC processors can be bootlinked from
link port 4. A bootlink is not necessarily used as netlink after booting.

1'12 VUG41R200B1 [11999 Eonic Systems, Inc

http://www.eonic.com/
mailto:info@eonic.com

Virtuoso user guide: book 1

Bootlinks are also used as a means of synchronizing the network. Even
when all the nodes in the system are booted directly, bootlinks must be
declared in order to specify the path of the boot packet.

Byte

A byte is assumed to be 8 bits.

Channel

The means of communication between processes. See book 4 of the user
guide for more details.

COTS board

Commercial off-the-shelf board, ie. a commercially available board, as
opposed to a custom board.

Dependency

Used in explanations of the makefile.

If a file is a dependency, it means that the target will be rebuilt if the
timestamp of any dependent file is later than the timestamp of the target
built by the previous make.

Direct booting

Booting the processor directly from the boot device (JTAG or host) rather
than via bootlinks.

Driver

Drivers are low level programs that provide generic or particular access to
hardware. They have an associated startup program that installs any /ISRs,
starts processes and so on. The startup program must be declared in the
project file driver definition.

The default drivers are declared in nodetype.h, which is included in the
node#.c intermediate file produced by Virtuoso’s generate utility. So you do
not normally need to include the nodetype.h separately.

VUG41R200B1 [11999 Eonic Systems, Inc 1'13

Glossary of terms

The default drivers are described in the processor supplement in book 4 of
the user guide.

Event

An event is a system object similar to a semaphore except that it has two
states, high and low, and is local to a node. Only one task can be
associated with an event. An event handler (a C function) can be called
when the event occurs. The handler cannot call any kernel services, but it
can indicate that the task waiting on the event is to be rescheduled.

Event signaling is the simplest and most efficient way to synchronize, and is
the preferred way for an interrupt service routine to communicate with the
application kernel or with a task.

Execution

Executions are transactions that occur when Virtuoso starts processing
requests.

Fifo
Formerly known as a queue.

A fifo is a system object suitable for transferring small amounts of data,
such as task control information, in an asynchronous, buffered and time-
ordered way. Fifo entries must be of a fixed size, with a maximum size of
ten 32-bit words.

A fifo might be used by a task filling an area of memory with data, for
example, to tell the task processing the data that the area is full. The
processing task could use another fifo to tell the memory filling task that the
data has been retrieved and that the area can be cleared.

For most purposes, we recommend the use of mailboxes over fifos because
they are more flexible, but the choice depends mostly on the size of the
data to be transferred.

File Generation directory

The file generation directory is where all generated code files are stored. It
defaults to the directory containing the project file. You can change it using
the menu option (Tools | Options) in the main window of the VPM.

1'14 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Host Extension Kit

A package supplied separately from Virtuoso that you can use to:
» write board support packages
e port the Virtuoso Host Server to different host OS’s
* add host service modules
* integrate the Host Server into an application

The HEK contains libraries, header files, templates and examples. For more
information mail info@eonic.com.

Host Server

There are two versions of the Virtuoso Host Server. One is started from the
command line, the other is started from the project manager. Both versions
have the same functions:

e resetting the target board
» booting, ie. downloading executables to the target board

» hosting, ie. handling interactions between the target board and the
host, such as standard I/O and graphics output to the host screen

The Host Server has four cooperating aspects:
* ageneric core
e a processor support package
* a board support package
» host service modules

Eonic Systems supplies a standard Host Server for each supported board —
check the Eonic web site www.eonic.com/ or mail info@eonic.com for the
latest list. Customers can write their own board support packages and host
service modules using the Host Extension Kit.

Host service module

A host service module is a part of the Host Server that supplies specific
services. For example, the Virtuoso implementation of standard 1/O is
written as a host service module, as is the graphics interface.

VUG41R200B1 [11999 Eonic Systems, Inc 1'15

mailto:info@eonic.com
http://www.eonic.com/
mailto:info@eonic.com

Glossary of terms

Intermediate files

The Generate Files option in the project manager uses the project file (VPF)
to create intermediate files: a source file (node#.c) and header file
(node#.h) for each node in the system, and another header file called
allnodes.h.

These files provide the system startup routines for each node in the
processor network, and define the data objects on each node as required.
The node#.c files contain the main() routine which initializes the node,
synchronizes it with the rest of the system and starts up user tasks in any
Task Groups that were defined to startup at boot in the project file definition
(the EXE Task Group always starts at boot).

Interrupt service routine

An ISR is a function that is called when an interrupt arrives from a
hardware device. ISRs are normally written in assembly language. In
Virtuoso, ISRs can use events or semaphores to synchronize with
application kernel tasks.

Linkbooting

Booting your processor using links between processors, instead of direct
booting. For example, an Analog Devices Sharc can be booted from Sharc
link port 4. Linkbooting is supported by the Virtuoso Host Server, and can
be supported in ROM booting.

Makefile

Makefiles are standard files that are used in building the processor
executables from your source code. They supply configuration and other
information to the compiler and linker, and contain a number of rules about
creating targets. The rules define the dependencies of the target and the
tools and options used to make the target.

There is a reference document for creating makefiles at the Computer
Science Department of Aberdeen University, UK:

http://www.csd.abdn.ac.uk/facilities/sw/texi2html/make toc.html

1'16 VUG41R200B1 [11999 Eonic Systems, Inc

http://www.csd.abdn.ac.uk/facilities/sw/texi2html/make_toc.html

Virtuoso user guide: book 1

Virtuoso’s makefile information is held in three separate files:

* VIRTDIR\<processor>\<compiler>\Base
This contains the processor and compiler makefile requirements

* VIRTDIR\<processor>\<compiler>\<board>\Tools
This contains the board-specific makefile entries

* VIRTDIR\<processor>\<compiler><board>\<category>\<program>
\makefile
This contains application-specific makefile entries. Note that the name
makefile must be all lower case

Makefiles are processed by the make utility, which the Virtuoso Project
Manager calls automatically when you select the Build or Rebuild options.
You can also call the make utility directly. It takes no parameters. The utility
is located in the VIRTDIR/bin directory.

See book 3 of the user guide for more information.

Mailbox

A mailbox is a system object suitable for sending large or small amounts of
data around the system. It is the preferred way for tasks to communicate.

A mailbox message is composed of two parts, a header and a body. The
header says who the message is from and how big it is, while the body
contains the message data. The mailbox stores only the header — the
message data is handled separately.

Messages can be any size and may be prioritized. For faster messaging, if
the sending and receiving tasks are on the same processor, then a pointer
to the message data can be passed via a field in the message header

For sending small amounts of data, you could also consider using a fifo.

Memory allocation

Virtuoso memory pools and memory maps are designed to reduce the
effects of three major problems with memory allocation routines.

The first problem is that a time lapse of indeterminate length can occur
while the allocation function (malloc) searches for a block large enough to
satisfy the request.

VUG41R200B1 [11999 Eonic Systems, Inc 1'17

Glossary of terms

1-18

The second problem is that standard memory allocations are usually not
re-entrant, and are therefore not safe to use in a multitasking environment.

The third problem is that fragmentation occurs when requests for memory
of different block sizes are made to a common pool. After a while, a request
for a new block may fail, not because there is insufficient memory, but
because there is no single piece of memory large enough to satisfy the
request.

Memory map

A memory map is a system object, consisting of an area of memory split
into blocks of a fixed size, and is local to the processor on which the
requesting task is running.

We recommend that new applications are written using memory pools in
place of memory maps.

Memory pool

A memory pool is a system object, consisting of an area of memory with a
block size determined and allocated dynamically within predefined
maximum and minimum sizes. It is local to the processor on which the
requesting task is running, but blocks can be freed by tasks on remote
processors.

Memory pools are the preferred method of memory allocation for Virtuoso
applications.

Microkernel

The former name for the application kernel.

Monitor

Used in explanations of the Tracing Monitor and the Task Level Debugger.

Each tab in the main window of the Tracing Monitor shows trace data for a
particular node. The tabs are called monitors because they are monitoring
activity on the nodes.

Each tab in the window of the Task Level Debugger shows debug data for a
particular system object — tasks, fifos, mailboxes, and so on. The tabs are
called monitors because they are monitoring activity on the objects.

VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Multi-level programming

Virtuoso tasks are written at the application kernel level. Many applications
can be written entirely at this level. However, there are three other
programming levels available to cater for specialized needs.

Task
Level

Level

] Process

f f f Global
(o] [] [e
_______________ g SR, S . S

HOOO0 T8

)

Interrupts

Disabled
The system kernel manages very small, lightweight tasks called processes.
Processes are fast but have some restrictions: non-pre-emptive scheduling;
a limited number of registers; and code which is not portable. It is best to
write code at this level in assembly language, although there is a set of C
routines provided. Some processors do not allow programming at this level,
so your system may not have the system kernel available.

Below the system kernel are the interrupt levels. Code written at these
levels is strictly assembly language. Here are the interrupt service routines
that run in response to interrupts received from hardware. They start up and
run very fast.

VUG41R200B1 [11999 Eonic Systems, Inc 1'19

Glossary of terms

There are two interrupt levels in a full Virtuoso system, but on your system
you might only have one — this is very low level and entirely processor-
dependent. If your processor doesn’t support it, you don’t get it.

An interrupt can be serviced at ISRO, ISR1 or even system— or application
kernel levels, depending on the processor and on how time-consuming the
processing is.

Multitasking

A Virtuoso application is built as a collection of tasks, each with its own
thread of execution and set of system resources. These tasks are written in
C. They communicate and synchronize using calls to Virtuoso kernel
services. There are currently about 80 services.

Since more than one task is normally loaded on a processor, Virtuoso is
managing several tasks at once — it's a multitasking system.

Nanokernel

The former name for the system kernel.

Netlink

A link between two processors that is used exclusively by the Virtuoso
kernel for inter-processor communications when the application is running.
The physical carrier for a link can be any type of hardware (e.g. twisted
wire, cable, bus connector, shared memory).

Contrast with bootlink, rawlink.

NLI file

The Network Loader Information file. This file contains information about:
» the target board type
» the number and type of processors on the board
» the root node, used to communicate with the host

e bootlinks

1'20 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Node

A node is a description of a processor on the target board, with its
frequency, local memory, communications ports and other processor-
specific information. It is defined in the project manager.

The root node is the processor directly connected to the host (usually via
shared memory or a fifo type link). When the application is running, driver
tasks running on the root node interface to the Host Server, providing
services for the other processors. Tasks that need fast access to the Host
Server, such as those required by the Task Level Debugger, should run on
the root node if possible.

When booting, the root node is loaded first, followed by all other nodes.
Loading code to the remote nodes is usually done using the comports or
linkports.

Object

Virtuoso is a formally structured system that encourages its users to write
structured applications. One of the ways it encourages structure is by using
objects. An object is just a convenient term for data and code structures
provided by Virtuoso that you can use in your application. Each object has a
fixed interface accessible only through kernel services.

There are nine objects: event, fifo, mailbox, memory map, memory pool,
node, resource, semaphore, task.

To use a Virtuoso object, you must define an instance of it in the project file.
It must be given an alphanumeric name, the first character of which must be
alphabetic. No embedded spaces are allowed but upper and lower case
can be used. All names must be unique (ie. a semaphore cannot have the
same name as a fifo, even though they are of different types). When the
system is generated, the kernel objects are assigned a 32 bit identifier. The
most significant 16 bits represent the node identifier, while the least
significant 16 bits represent the object identifier.

Packet

Data is sent round the system in packets. The number of packets to be
made available is specified for each node in the project file.

VUG41R200B1 [11999 Eonic Systems, Inc 1'21

Glossary of terms

There are three types of packets:

» command packets: used by the application kernel for service
information

» data packets: used to buffer data on intermediate nodes only when
you transfer data between indirectly connected nodes

» timer packets: used by the application kernel for timer information

Process

A process is the system kernel equivalent of a task. It is very processor-
specific - see book 4 of the user guide for more information.

Processor support package

A processor support package contains information for linkbooting specific
processors and for parsing the node information in the NL/ file.

Virtuoso project file

A Virtuoso project file (VPF) can be created in a text editor or by using the
project manager. The VPF links the hardware to the software and defines
all the drivers and objects used in an application. Because the distribution
of tasks on a network of processors is defined in this file, separately from
the source code, an application can be developed on a single processor
and then run on multiple processors with only small changes to the project
file and no changes to the source code.

The Virtuoso generate utility uses the project file (with the NL/ file and
architecture file) to generate intermediate files, which in turn are used to
build the executables.

The project file syntax follows some conventions of C. As a result, you can
define numbers as symbolic names, use include files, and use comments.

Project Manager (VPM)

The Virtuoso Project Manager (VPM) is an application that runs on the
development host computer. It is a complete Integrated Development
Environment (IDE), that enables Virtuoso users to create, edit, build, and
run applications. The Virtuoso project files it creates are simple text files, so
you can create and edit them directly if you want.

1'22 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

You use the main window for creating, saving or loading a project; for
checking the consistency of projects; for generating the application source
files; and for linking and compiling your application into executables. The
consistency check involves checking that the specified netlinks enable each
node to be reached from all the other nodes.

You use the node view and object view windows for specifying your
application. Both windows allow you to create application objects: the node
view shows all objects that live on a selected node, whereas the object view
shows all objects of a selected type (semaphore, mailbox, etc).

Rawlink

A link between processors that is used exclusively by the application. The
data transfer is a raw bit protocol. The physical carrier for a link can be any
type of hardware (e.g. twisted wire, cable, bus connector, shared memory).

There are two rawlink services, KS_LinkInW and KS_LinkOutW.

Contrast with netlink.

Request

Requests are transactions that occur when setting and clearing requests for
a kernel service, such as a KS_FifoPut. The kernel carries out the request
with one or more executions.

Resource

A resource is a system object. It is a logical device used to control access
to a physical device that is in demand by several tasks. The device is
locked by the task that gains control of the resource to prevent higher
priority tasks taking control before the current task has finished executing.

The priority of the task that currently owns a resource is increased to match
the highest priority of any waiting task in order to avoid the priority inversion
problem. You can limit the priority increase via the CEILING_PRIO global
parameter in the system folder.

Scheduler

Virtuoso has three layers of operation: interrupt, system kernel and
application kernel.

VUG41R200B1 [11999 Eonic Systems, Inc 1'23

Glossary of terms

Interrupts are serviced by the lowest layer. The associated /SR is started as
soon as the interrupt arrives and runs until it completes.

System kernel processes are prioritized, the programmer assigning a
priority level (between 0 and 62) to each routine. When a process has the
highest priority and is ready to run, it is started and runs until it either
completes, calls a yield or blocking service, or an interrupt arrives.

Application kernel tasks are prioritized in the same way as system kernel
processes, but a running task can be swapped out if a lower level routine or
a higher priority task becomes ready to run. Swapping out is called
descheduling. Being made ready to run is called rescheduling.

Application kernel tasks can also be time-sliced. This involves setting a limit
to the length of time a task can run without being swapped out, using the
KS_SchedulerSetSlicePeriod service. If a task is not swapped out by a
higher priority task, it continues until the end of the time slice, when it is
swapped out and the next task of equal priority is swapped in. If no equal
priority task is waiting, the original task is swapped back in for another time
slice.

Semaphore

A semaphore is a system object, enabling tasks to synchronize their
activities. A task signals a semaphore, which increments a count value.
Another task tests the semaphore and if it is not signaled can either wait
with a timeout, or return. A semaphore is similar to an event.

A semaphore can be accessed globally, and may be used as a counter.

Service

Virtuoso provides more than 80 application kernel services for the
application programmer to work with. They provide inter-task
communications, interfaces to the data objects, and other operations.

SIZEOFUNIT_TO_OCTET

This is a macro that transforms the result of a sizeof operation (size_t) into
8 bit bytes (octets).

1'24 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Synchronize

If an application is written as separate tasks, each task may need to know
what stage of processing the other tasks are in. In Virtuoso they can do this
by signaling and testing event and semaphore objects. The signal/test
process is called synchronizing.

By the same principle, a task that sends a message may or may not need
to know if the message has been received. If the sending task does need to
know, Virtuoso can deschedule it until the receiver appears for the
message, when the sender is released. Similarly, a receiving task may be
descheduled while it waits for a message to appear.

Because each task knows what stage of processing the other is at, this is
known as a synchronous message or transfer. If the task simply sends a
message and carries on without waiting for the receiver, it is known as an
asynchronous message.

Sysdef

The former name for the project file.

System folder

This provides system-wide information such as values for global
parameters. You can change the values using the node view window of the
project manager.

As supplied, the values in the system folder are:

e CEILING_PRIO S5
The maximum priority to which tasks can be boosted when they
become owners of a resource

+ DATALEN 16384
The length of data packets in bytes

* DRIVER_PRIOO
The priority of the netlink drivers

» KERNEL_PRIOO
The priority of the application kernel

VUG41R200B1 [11999 Eonic Systems, Inc 1'25

Glossary of terms

* TICKFREQ 1000
Ticks per second of the virtuoso timer. This affects timeouts on
application kernel services and the KS_TaskSleep service

e NLIFILE hw.nli
The path to the NL/ file for the application. If no path is specified this
defaults to hw.nli, which is the default NLI file supplied by Eonic
Systems

e« EXE, FPU, SYS
The default task groups

System kernel

Formerly known as the nanokernel.

The system kernel controls all processes, including the application kernel,
and provides an interface for ISRs to communicate with the rest of the
system.

The system kernel manages a collection of lightweight tasks called
processes, which communicate with each other using channels. A process
normally only uses a subset of the processor’s registers, which means a
context switch between two processes is very quick. The system kernel
provides both an assembly language API and a C programming API.

Target

Used in explanations of the makefile.

The target is the output, which can be just a name (a fake target) or a file.
The timestamps of the dependencies determines whether or not the target
is rebuilt when the makefile is processed.

Target board

The board containing the processors on which the Virtuoso application will
run.

Task

In a Virtuoso system a task is a code object: an independent module that
performs a well-defined function or set of functions. It will typically talk to

1'26 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

other tasks using service calls to other objects: semaphores, fifos,
mailboxes, and so on.

Tasks:
» are defined in the project file
* have an entry point, a priority and a stack size,
» can belong to a task group
* have a task state
Task ids are allocated by Virtuoso at compile time. The id has two parts:
* processor number
» task id within that processor

For example, the task id 0x0002000A represents task 0Xx000A running on
processor 0x0002.

Task group

Virtuoso tasks can be grouped so that all tasks in the group can be
operated on by group services (such as KS_TaskGroupStart). The group
identifier is a 32 bit word, where each bit identifies membership of a
different task group.

Group membership is defined in the project file, and can be altered
dynamically at runtime using task services. A task can belong to as many
groups as necessary, up to a maximum of 32. There are three predefined
task groups:

 EXE. Tasks assigned to this group are started automatically when the
application is loaded

» FPU. Originally related to use of the floating point unit of a Transputer,
this group now is used on SHARC boards for tasks that need circular
buffering enabled

» SYS. Tasks assigned to this group continue to run when the system is
paused for the Task Level Debugger — so this group should contain
only the tasks required by the Task Level Debugger

VUG41R200B1 [11999 Eonic Systems, Inc 1'27

Glossary of terms

Task entry point

The entry point is the name of the function where execution starts
(equivalent to main() in a normal C program). It is normally the same as the
task name, except that the task name is UPPER CASE and the entry point
is lower case.

The entry point is set at compile time, but may be changed before starting
execution by a service call, to provide simple dynamic tasking.

Task priority

Every task has a priority, whose initial value is set in the project file. The
priority determines which task should be run next. Priorities are in the range
0 to 62 where 0 is the highest. Priority 63 is reserved for the background
task and should not be used by an application.

The priority can be changed dynamically using a service call.

Task stack

Each task has its own stack which is used for local storage of function calls
and variables. On most processors, the task stack must also be large
enough to handle worst-case ISR nesting. This is because the stack of the
current task is used for saving the registers used inside each ISR.

The stack size is defined in the project file. It is defined as the number of
entries, since the actual size is processor-dependent. When developing a
new application, you should make the stack larger than you need to begin
with and reduce its size later based on the stack usage information in the
Task Level Debugger.

Task state

Enqueue: the task performed an enqueue operation on a FIFO
Dequeue: the task performed a dequeue operation on a FIFO
Send: the task initiated a message transmission

Receive: the task initiated a message reception

Sema: the task performed a KS_SemaTest(W(T))

Semalist: the task performed a KS_SemaGroupTest(W(T))

1'28 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Resource: the task performed a KS_ResLock(W(T))
Memory: the task performed a KS_MapGetBlock(W(T))
Temp: used by the kernel to adjust task priority

Network: used by TLDEBUG task when requesting information form other
node; or regular task performing KS_SemaStatus

Halted: task is halted

Terminated: task is terminated

Suspended: task is suspended

Blocked: used by debugging system to suspend tasks during debug session
Timer: task issued KS_TaskSleep

Driver: task issued driver call

Data: task issued KS_MemCpy

Event: task issued KS_EventTestW

Task Level Debugger

The Task Level Debugger is an application that runs on the host computer.
It takes a snapshot of a running application and provides information about
the state of the application objects so you can find out if the application is
running efficiently.

Each tab in the debugger window monitors usage of a particular class of
system object, such as the task class. The task monitor shows the stack
usage of all the tasks running on the target board at the point the
application was paused; the packets monitor shows allocated and used
packets; and so on.

Tick

A tick is a unit of time. Its value is determined by the TICKFREQ variable in
the system folder .

VUG41R200B1 [11999 Eonic Systems, Inc 1'29

Glossary of terms

Timer driver

The Virtuoso timer driver is a low resolution driver with a frequency defined
by the TICKFREQ variable in the system folder. The availability of high
resolution drivers depends on the target board supplier.

The Virtuoso timer driver is essential for most applications. You must
include it in your project file if you want to use KS_TaskSleep, or the
timeout version of any services (KS_xxxxWT) .

Tracing Monitor

The Tracing Monitor is an application that runs on the host computer.

While the application is running in debug mode, information about
semaphore signaling, resource locking and other system transactions is
saved in a circular buffer. When the application is paused, this information
is displayed by the Tracing Monitor. You can see the duration of all
transactions occurring in the system, and the connections between them.
The transactions are grouped by node, by task and by time.

VIRTDIR variable

This is an environment variable defined in the Virtuoso install process. It
specifies the path to the directory where Virtuoso is installed (normally
c:\Virtuoso). You should avoid using white spaces in the path name.

It is used throughout this user guide to mean the Virtuoso root directory.

WIN_DIR variable

This variable is only required by Win95 and Win98 systems and should be
set to the Windows directory — normally C:\Windows. It is used by DOS
commands like attrib — see the Win95 version of the base makefile for an
example.

WinRT drivers

Some target boards use drivers from the board manufacturer, and some
use WInRT drivers shipped with Virtuoso. See the current list of board
drivers on the Eonic web site www.eonic.com/.

1'30 VUG41R200B1 [11999 Eonic Systems, Inc

http://www.eonic.com/

Virtuoso user guide: book 1

The WInRT drivers are developed by Blue Water Systems. For more
information, check their web site: www.bluewatersystems.com/.

VUG41R200B1 [11999 Eonic Systems, Inc 1'31

http://www.bluewatersystems.com/

Glossary of terms

This page intentionally left blank

1'32 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Chapter

2 Crash course

This chapter uses simple examples to introduce some of the major features
of Virtuoso. If you are new to Virtuoso or have used previous versions of the
software without the GUI interface, then it is worthwhile spending some time
to familiarize yourself with the new features. Not all the features of Virtuoso
can be covered in this chapter, but once you understand these basic
facilities, the rest will be easily understandable.

The source code for all the examples is supplied on the Virtuoso CD, with
all the necessary files required to create and run them. See the folder:

VIRTDIR\<processor>\sources

2.1 The key points

This crash course is meant to get you to the point where you can start
programming real applications. Before you start:

* we assume that you have installed your system correctly
* we assume you know the basics of C programming

e it would be helpful if you knew a little about the make utility and
makefiles — but it's not essential. We change the makefile during the
crash course, but the changes are very simple

If you find a word you’re not familiar with, or a familiar word that we seem to
be using in a strange way, take a look at the glossary on page 1-11. You'll
also find the glossary in the help system.

This chapter is a basic introduction. If you run into problems that are not
described here, look in the reference sections of the guide. If they can't help
you, don't hesitate to contact Eonic support. Contact details are on page 2
of this user guide.

VUG41R200B1 [11999 Eonic Systems, Inc 1'33

Preparation

2.2 Preparation

2.2.1 Where to find the example files

The first thing is to find the MyApp example. Look for the
VIRTDIR\<processor>\<compiler> folder (where <processor> is the name
of your processor, eg. Analog Devices Sharc, and <compiler> is the name
of the compiler you're using, eg. VDSP).

The folder contains one subfolder for each supported board you installed,
and below the board folder, subfolders for the example applications. The
example is in the
VIRTDIR\<processor>\<compiler>\<board>\MyProjects\MyApp
subfolder (where <board> is the name of your DSP board, eg. Blacktip).
Each of these subfolders contains the configuration for a particular
application. They will also hold the temporary files used in building the
application, and eventually the executables too.

You might want to browse through the description of the folder structure in
book 3 of the user guide, because you'll need to know it reasonably well
later.

2.2.2 Preparing source files

The MyProjects\MyApp example is an empty application configured to use
standard I/O and to run in debug mode. You are going to add a task that
does a printf. Then you’ll compile and run the application.

The usual place to keep source files is in a subfolder under the
VIRTDIR\<processor>\sources folder, and that's where the example in
this tutorial puts it. If you want to keep it somewhere else, you'll have to
make some small changes to the makefiles — see “Makefiles” in book 3 of
the user guide for details.

If you configure your application to look in
VIRTDIR\<processor>\sources\hello all the source you add will
automatically be compiled into executables.

So to start:

» create a new folder
VIRTDIR\<processor>\<compiler>\<board>\MyProjects\hello

1'34 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

» copy the contents of
VIRTDIR\<processor>\<compiler>\<board>\MyProjects
\MyApp
to the new folder

» create a new folder VIRTDIR\<processor>\sources\hello

» using your favorite editor, open ...MyProjects\hello\makefile and
change:
SOURCEPATH=VIRTDIR\<processor>\sources\MyApp
to read:
SOURCEPATH=VIRTDIR\<processor>\sources\hello

» save the updated makefile

2.3 Hello world...

Using the project manager
Now to start using the Virtuoso tools:
» click Start>Programs>Virtuoso>Virtuoso Project Manager

The main window of the Virtuoso Project Manager (VPM) appears. The
VPM provides an easy way to configure applications. When you start it, the
last project file you edited is loaded, or, if this is the first time you have
started the project manager, a new project is created.

» select File | Open

+ select
VIRTDIR\<processor>\<compiler>\<board>\MyProjects\hello\hello.vpf

This opens the project file for your new application. It already contains a
node entry and some other things, but you have to add some more specific
entries. First, add a task.

(By the way, node is defined in the glossary on page 1-11).

Creating a new task

If you read chapter 1 of this book you’ll remember that Virtuoso applications
are written as small communicating tasks. A task is just C code. The name
of the task has to be added to the project file.

VUG41R200B1 [11999 Eonic Systems, Inc 1'35

Hello world...

1-36

You'll be working in the object view window. To find the window, the easiest

way is to:

e click the |§| icon on the main window, twice

When the window appears, to create a new task:

« inthe left hand pane click the “— T#2 jcon

» select Edit | New | Task or click the toolbar button

The Edit Task Properties dialog appears.

Edit Task Properties

MNode: [MODET

=

M ame: ITASK1 243272

Pricrity: I1 0 E

Cancel |

E ntrupoint; IfDD

Stacksize I1 024

— Other parameters

=1
=l

— Tazk Group Memberzhip-

Fararmeter | Y alue
OBJECTID R3R5504
TvPE TASE,

[IEXE
[IFFU
1SS

VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

» type the properties of the new task

Node NODE1

Name HELLO [in upper case]

Priority 10

Entrypoint hello [in lower case]

Stacksize 1024 entries. The actual size is
processor-dependent

Task group EXE

membership

You can ignore “Other parameters” for now.

That's it. When you finish typing, check your entries. If they’re correct, click
OK and the new task is added to the project file.

Using upper case for Name and lower case for Entrypoint

While it is a good idea to make the name of the task the same as the
entrypoint, they must be different cases. This is because in the allnodes.h
file — an intermediate file output by Virtuoso’s generate utility — you will find
a list of all kernel objects and their respective numbers as defines. For
example:

#define RECVTASK 0x00010001

The symbol corresponding to the entry point of a function is the name of the
function itself. So if you were to use the same name and case for the kernel
object and the function, the ¢ preprocessor would also replace the function
name by 0x00010001

Getting the stacksize right

It is very important to get the stack size right. Stack overflow is a very
common cause of application failure. You should always make the stack as
big as possible (at least 1024 entries). You can then monitor stack usage
with the Task Level Debugger, and decrease it as necessary.

VUG41R200B1 [11999 Eonic Systems, Inc 1'37

Hello world...

Host communication objects

You'll notice there are already some Virtuoso objects in the
MyProjects\hello project file:

+ HOSTIODRYV, a task that handles host communications
» HOSTMBX a mailbox used by HOSTIODRV

* HOSTRES, aresource used by HOSTIODRV

e a host driver for your board

Virtuoso always needs these for applications that use a host, and for
development of hostless applications. Click the appropriate objects (task,
mailbox, resource) in the left hand pane and look at their properties. Notice
that the host drivers always run on the root node.

The root node is the processor directly connected to the host (usually via
shared memory or a fifo type link). When the application is running, driver
tasks running on the root node interface to the Host Server, providing
services for the other processors. Other tasks that need fast access to the
Host Server, such as the Task Level Debugger, should also run on the root
node if possible.

Creating a new source file

Now you have to provide the task code that you've just told Virtuoso is part
of your application.

See hello.c in VIRTDIR\<processor>\sources\Man_ex_1 So:
e click the VPM main window
» select File | New Source file

» write the program! You need to include the Virtuoso standard 1/0
library _stdio.h (don’t leave out the underscore)

Your new task is just a C function of type:
void hello(void)

Remember that the function name should be the same as the entry point
specified in the project file.

1'38 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Your HELLO task will be called automatically when the application is
loaded, because in the project file you specified the EXE group as its task
group. You don’t need to call any task entry point functions yourself.

Once you've written the code:
» select File | Save

» save the source as hello.c in VIRTDIR\<processor>\sources\hello\

Generating intermediate files

To generate intermediate files:
* click the IEl (save) button on the main window toolbar

» click the EI (generate) button on the main window toolbar

Virtuoso's generate utility creates some intermediate files using the entries
in the project file. The intermediate files are:

* node#.c — one per processor (eg. nodel.c, node2.c)
» node#.h — one per processor (eg. nodel.h, node2.h)
» allnodes.h

The header files define the global and local data objects for the nodes. The
node#.c files contain the main() routine which initializes the node,
synchronizes it with the rest of the system and starts up user tasks in any
Task Groups that were defined to startup at boot in the project file definition
(the EXE Task Group always starts at boot)

The intermediate files are used in the build process as input to the makefile.

Rebuilding the project

Now make the executable:
» click the IE' (save) button on the main window toolbar

» click the (rebuild) button

VUG41R200B1 [11999 Eonic Systems, Inc 1'39

Hello world...

This rebuilds the executable file. All files in the source folder are compiled
and task entry points are mapped to the functions specified in the source
files.

The build process relies on makefiles which supply configuration and other
information to the compiler and linker. Virtuoso’s makefile information is
held in three separate files:

* VIRTDIR\<processor>\<compiler>\Base, which contains the
processor and compiler makefile requirements

* VIRTDIR\<processor>\<compiler>\<board>\Tools, which contains the
board-specific makefile entries

* VIRTDIR\<processor>\<compiler>\<board>\<category>\
<example>\makefile, which contains application-specific makefile
entries.

Note that the name makefile must be all lower case.

See book 3 of the user guide for descriptions and examples of the
makefiles. If you've already browsed through Virtuoso’s folder structure and
are wondering why there are application makefiles at several other folder
levels in the Virtuoso structure, book 3 will tell you.

Makefiles are processed by the make utility, which the Virtuoso Project
Manager calls automatically when you select the Build or Rebuild options.
You can also call the make utility directly. It takes no parameters. The utility
is located in the VIRTDIR/bin directory

Test the application

Once the build process has been completed there is a separate executable
file for each processor in the network. Since we have defined only one
processor for our “Hello World” example, there is only one executable. The
executables are named for the nodes available: testl.exe for node 1,
test2.exe for node 2, and so on.

To test the application, you can run the Virtuoso Host Server:

e click the El (Host Server) button on the main window toolbar

This downloads the executable to the target processor and runs the
application. If everything is OK, the console window pops up and says
“Hello world!”

1'40 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Problems?

So, what if the console window doesn’t pop up and say “Hello world!” ?

Compiling
... Virtuoso doesn’t compile my hello.c source

» did you change the correct makefile? Is SOURCEPATH pointing to
the folder VIRTDIR\<processor>\sources\hello?

» isyour source in the VIRTDIR\<processor>\sources\hello folder ?

Running

... hothing prints, there’s no console window
» tryto run a pre-compiled example (e.g. KSBench)

If this fails, either your board or the Virtuoso software has an installation
fault. Check the board first — check especially that you have installed the
correct driver.

If the pre-compiled example runs:

» check that your source is similar to:
#include <_stdio.h>
void hello(void) { printf(“/n Hello world ! /n”); }

... there’s garbage on the screen or the console window is empty

* make sure you included _stdio.h (with the leading underscore)!

Comment
There’s nothing in your code to tell the program to stop (unless you've
added it yourself), so you have to stop it:
» click the El (Host Server) button on the main window toolbar
Your program stops.

The Virtuoso standard 1/O library (_stdio.h) can be used by tasks running on
any node. Remember to include the leading underscore(_), because you

VUG41R200B1 [11999 Eonic Systems, Inc 1'41

Inter-task communication

need Virtuoso’s version. The I/O requests will then automatically be routed
through the root node to the host system (remember, the root node is the
processor wired directly to the host).

If you don't include the leading underscore in _stdio.h, the compiler uses
the printf function from its own stdio.h library. There are some limitations to
_stdio.h compared to the compiler’s version — see the #include of _stdio.h.

The project manager uses two databases to construct the intermediate files:

» the NLI file, which holds information about the target processor on
which Virtuoso will be running

» the project file (VPF), which holds all the project related information

At startup, the system loads the default NLI file from the VIRTDIR\default
folder. If this is not the correct NLI file you can change it using the system
folder, accessible via the Node View Window. See “Changing global
parameters” in book 2 of the user guide.

2.4 Inter-task communication

One task

So, your task runs. You may be surprised that the source looks like all the
other C programs you've written. Of course it's extremely basic, but actually
a Virtuoso task differs from traditional programs only in that it's usually
shorter and doesn’t contain many if or case statements. It's kept simple.

And that’s the crux: a task does a very specific job — it may take characters
from one place and put them in another, for example, or manipulate them in
one way — and then hands over to another task.

When you break your traditional application into small tasks, you need to
think about how the tasks communicate, and how they are scheduled.
Although this is slightly more work for you than before, the result is a faster
and more flexible system that is easier to maintain. And the scheduling part
is not hard — remember you gave your HELLO task a priority of 10? That's
your main contribution to scheduling.

1'42 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1
Many tasks

Creating the task definitions

We’'ll add two more tasks for your first task to talk to. It's the same process
we just went through for the first task:

» find the object view window

« inthe left hand pane click the = T2 jcon

. . T
» select Edit | New | Task or click the toolbar button

* type the properties of the new task

Node NODE1

Name WORLD [in upper case]
Priority 10

Entrypoint world [in lower case]
Stacksize 1024

Task group EXE

membership

» check the values, then click OK
Now repeat for the third task, which has the same properties except:

* name: EXCLAM
entrypoint: exclam

Synchronizing tasks

This sounds very grand, but is just a matter of defining some semaphores.
A semaphore is a data object whose value is zero or a positive integer. One
task signals the semaphore when it finishes a piece of work, and this signal
increases the semaphore’s value by 1. Another task wants to know if the
work has been done, so it tests the semaphore. If the semaphore is zero,
the second task knows the work isn’t done and waits until the first task
signals. Otherwise, the test returns with a standard message (RC_OK) and
the semaphore value is decreased by 1.

VUG41R200B1 [11999 Eonic Systems, Inc 1'43

Inter-task communication

This is task synchronization. You use it instead of the kind of if statement
within an ordinary application that says:
if k > 50 then <do this>

What will happen instead is that the part of the application that makes k
greater than 50 signals a semaphore when it reaches 50. The part of the
processing depending on the ifis moved into a separate task, and tests the
semaphore.

So, in our little example, we’ll add some task communication. A semaphore
is just another object, like a task, and you define it in a similar way, so:

» find the object view window

7y Semaphores

* inthe left hand pane click the icon

» select Edit | New | Semaphore or click the toolbar button Li*!

Kernel Object Editor

MNode [NODET =l
Name |5EM1

Parameter | W alue |
OBJECTID ekt

TvFE SEMA

* type the properties of the semaphore

Node NODE1
Name SEMA_HELLOWORLD

» checkiit, and click OK
Now add a second semaphore called SEMA_WORLDEXCLAM.

1'44 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Changing the source

Tasks are the only objects you have to write code for. There’s no code to
write for the semaphore: it's an object you can use just by defining it in the
project file and then calling an appropriate Virtuoso service in your task
code.

So now we’'ll change the source of HELLO to use the semaphore, and add
code for the two new tasks. You can use any editor you want to change the
source.

Edit hello.c to read:

#i ncl ude <_stdio. h>

#i ncl ude <iface. h>

#i ncl ude <al | nodes. h>

voi d hello(void) {

printf(“Hello ”);
KS_SemaSignal(SEMA_HELLOWORLD); }

The reason for including iface.h and allnodes.h is given in the “Comment”
section on page 1-46. Now add a new task WORLD to the same folder.

* Open a new file and type:
#i ncl ude <_stdio. h>
#i ncl ude <iface. h>
#i ncl ude <al | nodes. h>
void worl d(void) {
KS_SemaTest W SEMA_HELLOWORLD) ;
printf(“World ”);
KS_SemasSignal(SEMA_WORLDEXCLAM); }

e Save the file as world.c

Now add a third task EXCLAM to the same folder:
#include <_stdio.h>

#include <iface.h>

#include <allnodes.h>

void exclam(void) {
KS_SemaTestW(SEMA_WORLDEXCLAM);

printf(“!/n”); }

VUG41R200B1 [11999 Eonic Systems, Inc 1'45

Inter-task communication

The HELLO task prints “Hello” on the screen then signals the
HELLOWORLD semaphore. The WORLD task tests the HELLOWORLD
semaphore, whose value will be 1, and which therefore returns RC_OK.
The WORLD task then prints “World” and signals the WORLDEXCLAM
semaphore; and so on.

After saving the new source files, add the two new tasks to the project file,
in the same way you added the first task — see page 1-35 for details — and
save the project file.

When you've edited and saved the three source files, and edited and saved
the project file, you can recompile the application and run it like this:

e click the VPM main window
» click the (rebuild) button

» click the El (host) button

If everything is still OK, the console window pops up and says “Hello,
world!” just the same as the first version.

Click the El button again to stop the program.

Comment

It is not essential for the source code of the three tasks to be placed in three
separate files, but it is better if they are separate.

If the three tasks are separate, they are compiled into three separate object
files/executables. This means that only the code required on each node is
downloaded to it. If the code for the three tasks was in one source file, only
one executable would be produced which would have to be loaded onto
each processor. Each processor would then have superfluous code,
resulting in a waste of target memory space.

The header file iface.h that we included in the two new tasks enable you to
use the KS_* functions (called services) supplied with Virtuoso. These
services are the way tasks, semaphores and other objects are accessed
and manipulated.

The header file allnodes.h that you included is generated from the project
file. It is part of the SoftStealth system, and contains definitions of the
system-wide kernel objects used in your program. In our case it contains

1'46 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

definitions of semaphores and tasks. You already know that a semaphore
only needs a name for it to be used by a task. The header file node#.h is
another generated file. It is included by allnodes.h, and contains node
specific objects such as memory maps.

There are nine kernel objects in all, and they are made available simply by
specifying them in the project file. Some, like semaphores, need only a
name. Others, like tasks, need a name and a few more values. Once they
are specified in the project file, you can use the object’'s KS_* services in
your code to manipulate them. For example, the kernel object fifo needs
these values in the project file:

* name
* depth (number of entries)
» width (size of each entry)

And fifo has four services:

KS_FIFOGet[W|WT] Get the oldest entry from the fifo
KS_FIFOPurge Clear the fifo of all entries and waiters
KS_FIFOPut[W|WT] Put an entry in the fifo
KS_FIFOStatus Read the number of entries

Now for a little useful information about tasks. When you specify a task, you
include a group membership, an entrypoint and a priority.

The group membership enables you to operate on many tasks
simultaneously. Any task in the predefined group EXE is started when the
application is run. Any task in the predefined group SYS continues running
when the Task Level Debugger is in use. You can create your own groups.

The task entrypoint is the starting address of the C function that implements
the task. It is normally the same as the task name, but in lower case.
Because the entrypoint function is specified in the project file, you don’t
need to call it yourself.

Tasks are scheduled by the microkernel according to their priority. The
details are given in book 2 of the user guide. You have some influence on
the scheduler with some of the KS_Task* calls.

VUG41R200B1 [11999 Eonic Systems, Inc 1'47

Inter-task communication

For example you can:
* make tasks available or not available for scheduling
* change task priorities

One more thing: it's a good idea to think of tasks as black boxes. When two
tasks interact, each should only know what goes in to the other task and
what comes out. Then communication between the two tasks is
straightforward.

Problems ?

Compiling

Are you sure you included iface.h and allnodes.h ?

Running

...garbage on the screen ?

* make sure the printf function comes after the KS_SemaSignal and
before the KS_SemaTestW. Otherwise, the tasks will try to do a printf
simultaneously, in which case the ouput of the printf calls will be
mixed up. (Try it and see!). To stop this kind of interlacing, you can
use resource locking: if you want, try using the KS_Reslock and
KS_ResUnlock services on the STDIORES resource. Details of these
services are in book 2 of the user guide

* make sure you typed KS_SemaTestW with the W. The W stands for
wait, and it means that the task will wait until the sema is signaled.
KS_SemaTest (without the W) returns immediately with a return value
that indicates whether the semaphore value was zero or positive

e did you include “_stdio.h” in all three source files ?

1'48 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

2.5 Inter-processor communication

The examples in this section only work with target boards that have more
than one processor, or with systems with more than one target board. Also,
some processors do not allow multi-node operation. You'll have to look at
the technical reference guide for your board to find out. If it supports multi-
node operation, you can continue.

The purpose of the example in this section is to show how easy it is to
move tasks and other objects from node to node (processor to processor).
Moving tasks and other objects to different nodes can help to solve
bottlenecks by distributing the processing load more evenly.

Add a new node

Nodes are treated like kernel objects in that adding a node is just a matter
of defining its name and some other attributes in the project file:

» find the object view window

* inthe left hand pane click the node group icon P

» select Edit | New | Node or click the toolbar button ﬁl

Node Editor I
Nemias INIIIDE2

MNarng i ML file INLINDDE_UNDEFINED j Cancel |
of data packets: I'I 0 — Maonitar mask

of command packets: I1 0 [|Task Swaps
[w] T ask State Changes

of timers: |2 [|K.ernel Services

[Events

K.emel stack size: 256 =

Fanitor Buffer Size: I'I 0ao _l:

VUG41R200B1 [11999 Eonic Systems, Inc 1'49

Inter-processor communication

1-50

» change these two attributes of the node. You can use the default
values of the other attributes

Name NODE2
Name in NLI file NODE2

» check the values, and click OK

You might take some time out at this point to check out what the attributes
of a node object mean. They are described in the project manager help file
and in book 3 of the user guide, along with the attributes of the other
Virtuoso objects.

Add a netlink driver

At this point you should have read your processor supplement (book 4 of
the user guide). You need the information in book 4 to complete this
section.

We are now at the point where the differences in boards starts to make
things a little complicated. Not for you, if you have just one or two boards,
but for us, because we support many different boards and processor
configurations.

Netlinks are used by the Virtuoso kernel for communications between
nodes. A netlink is a description of a single physical link between two
processors, and may be uni- or bi-directional. Directionality may be
important. See page 1-64 for more information.

For each physical link, you have to specify at least two netlinks. Just as you
have to tie a hammock to a tree at both ends, you have to specify a netlink
on each processor (tree) connected by the physical link (hammock). A
Virtuoso application can use as many processors as you have, as long as
each processor can be reached from all other processors (either directly or
via intermediate processors) . On some boards, you need to add two
netlinks for each physical link — this is made clear in the processor
supplement.

Like nodes, you can think of netlinks as kinds of kernel objects. To add a
netlink you just define its name and some other attributes in the project file:

» find the object view window

1 MetLink Drivers

* inthe left hand pane click the icon

VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

M,
» select Edit | New | Netlink or click the toolbar button, eg. |&I

MetLink Driver Editor

Made 1 [NODET =l Node2 [NODET =l
L ~
Call 1 IEALLx Call2 IE.E\LLy
Parameter I Walue I
TFPE METLINK.

» leave the Node 1 value as NODE1
» change the Node 2 value to NODE2

* type the name of a driver initialize function (CALLx) for NODE1 and a
driver initialize function (CALLY) for NODE2. The names of the driver
initialize functions are given in your processor supplement

* inthe dropdown textbox select the symbol > (ie. the direction of the
netlink is from Node 1 to Node 2)

» check the values and click OK

Now repeat this procedure, still with NODE1 as Node 1 and NODE?2 as
Node 2, but specifying the direction as < (ie. the direction of the netlink is
from Node 2 to Node 1).

Having specified the second node and the communication route between
them, you can now move some tasks to the second node.

Move tasks 1 and 3 to the new node
Now you'll move two of the three tasks you've created to node 2:
» find the object view window
« inthe left hand pane click the = T2 jcon
» doubleclick HELLO and change the NODE attribute to NODE2
e click OK

VUG41R200B1 [11999 Eonic Systems, Inc 1'51

Inter-processor communication

» doubleclick EXCLAM and change the NODE attribute to NODE2

+ click OK

It's that simple. Almost. We just have to make a small adjustment to the
makefile and the nli file, which are configured for just one processor.

* open the file makefile in the folder
VIRTDIR\<processor>\<compiler>\<board>\MyProjects\hello
using your favorite editor

e find the line that says:
all: testl.exe

» change it to read:
all: testl.exe test2.exe

* add a compilation line for the test2.exe:
test 2. exe: $(DEPENDENCI ES) $(ACHFI LE) test2.1nk NODE2.o0
$(LN) -i test2.Ink -0 $@ -a $(ACHFILE) -m

(that’s all on one line)
* save the makefile

For the NLI file you have to add another node declaration, plus the bootlink
path to the new node from the root node. Since the node declaration is
processor dependent, the best way to see what is needed is to look at an
NLI file for a two-node example in the folder
VIRTDIR\<processor>\<compiler>\<board>\<category>\<example>.

When you've edited the NLI file:

» recompile the application using the Rebuild button in the VPM, and
run it using the Host Server button

Congratulations! You have now produced a highly optimized parallel-
processing multitasking application!

1'52 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Problems ?
If the previous examples were OK, you shouldn’t get any compiler errors.
... application doesn’t boot

» test your board with a pre-compiled multi-processor-example, e.g.
KSBench.2p

If it works (as it should if the previous examples worked), then go through
the example again and check for editing errors. If it doesn’t work, you
should recheck your netlinks and the physical links with help from the
technical reference manual for your board.

...application boots but doesn't start

¢ check the netlink definition

Comment

Configuration

Configuration issues are important in a multi-processor application, and
separating the configuration information from the code makes life a little
easier.

Virtuoso application code just says what happens, it doesn’t say where it
happens. The project file says where it happens, and to change the location
of an object such as a task or semaphore is just a matter of editing the
object’'s Node attribute. It's only when increasing or decreasing the number
of nodes that you need to change the makefile.

The easiest way to upgrade an application to run on more processors is to:
* locate a multiprocessor example in the Virtuoso example subfolders

» copy the example’s NLI file and those parts of the project file
containing the needed node and netlink entries

Since the project file is a text file, you can use an editor to amend it. The
layout of the project file is described in book 3.

VUG41R200B1 [11999 Eonic Systems, Inc 1'53

Summary

Kernel objects

We keep mentioning objects or kernel objects. That's just a convenient term
for data structures (mostly) provided by Virtuoso that you can use in your
application. Tasks and semaphores are kernel objects. Here’s a complete

list:
* event
« fifo
* mailbox

* memory map
* memory pool
* resource

* packet

e semaphore

o task

They are described fully in book 2. Nodes and drivers are defined like
kernel objects in the project file, but they don't actually qualify as kernel
objects because there are no services for them.

2.6 Summary

If you've gone through the crash course, you know enough about Virtuoso
to begin creating real applications using the application kernel.

To summarise, you need to:

» set up one folder for your application, to contain an NLI file, a project
file, a makefile, and an architecture file

» setup a second folder for the source
« create the project file using the project manager

» write the source, using Virtuoso services to manipulate the kernel
objects

* use the VPM generate utility to create the intermediate files

1'54 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

» use the VPM build or rebuild utilities to compile and link the code and
create executables

» use the VPM Host Server to run the application

If you need to write ISRs and system kernel processes, you need to read
the description of the system kernel services in book 2 of the user guide,
and the processor supplement in book 4, because low level programming is
beyond the scope of this brief introduction.

2.7 Other examples

The hello world example is supplied as man_ex_1 in the
VIRTDIR\<processor>\<compiler>\<board>\tutorial folder. That folder
contains six more examples of simple code, described below, whose source
and associated project files are supplied in the
VIRTDIR\<processor>\sources folder so you can study them.

There are also ten example applications that give a taste of what Virtuoso
can do in the subfolders under the
VIRTDIR\<processor>\<compiler>\<board>.

2.7.1 Example code

Man_ex_2 - simple host I/O

This task prints a prompt on the screen and then polls the host keyboard
waiting for a character key to be pressed. Polling is not usually a good idea
in a real-time application as it wastes valuable processor resources, but we
use it here to keep the example simple. Once a key is pressed, the value of
that key is printed out on the host screen, and the task finishes.

Man_ex_3 — semaphores

The CLIENTTASK prints a prompt on the host (via the Host Server) and
then waits for a key to be pressed. This task makes periodic calls to the
KS_TaskYield service while polling for the keypress to allow other tasks of
equal priority to execute. When a key is pressed, the SEMA1 semaphore is
signaled, and CLIENTTASK returns and waits for another keypress.

VUG41R200B1 [11999 Eonic Systems, Inc 1'55

Other examples

The SERVER task waits for the SEMA1 semaphore to be signaled. As soon
as CLIENTTASK signals the semaphore, SERVER becomes ready to run,
and because it is of higher priority than CLIENTTASK, will be scheduled
immediately. SERVER prints a message acknowledging receipt of the
semaphore signal, returns, and waits for the next signal.

Both CLIENTTASK and SERVER are in continuous loops, so they will run
indefinitely.

This example shows how a semaphore is used to synchronize the operation
of two tasks. In this case the tasks are running on the same processor
node, but the source code would look identical, even if the client and server
were running on different nodes.

Man_ex_4 - mailboxes

In this example we use a mailbox to show how intertask data transfers
occur. The mailbox.vpf file shows that we have two user tasks called
CLIENTTASK and SERVERTASK and a single mailbox called MAILBOX1.

As in the previous example the client task waits for a keypress and the
server waits for a message in the mailbox. When a key is pressed, the
CLIENTTASK composes a message with the key value in it and sends it to
MAILBOX1. Notice that the message can only be read by the
SERVERTASK (due to the value in the rx_task field). SERVERTASK
receives the message (it too had specified that it would only accept
messages from CLIENTTASK, via the tx_task field in its message structure)
and unblocks. It has a higher priority than the CLIENTTASK, so the
scheduler starts to run it immediately. The contents of the message are
printed via the Host Server and the SERVERTASK returns and waits for
another message to arrive.

Man_ex_5 - timers
This example shows how a timer can be used to wake a task periodically.
The TIMERINIT task requests a new timer from the pool of timers available,
and initializes it to go off initially after 5000 clock ticks (5 seconds @ 1KHz),
and then every 2000 ticks (2 seconds @ 1KHz). Whenever the timer goes

off, the TIM_SEMA semaphore is signaled. The TIMERINIT task finishes
once the timer has been started.

1'56 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

The TIMERRESPOND task waits on the TIM_SEMA semaphore. As soon
as the semaphore is signaled (i.e. when the timer has gone off) a message
is sent to the host. The first message appears after 5 seconds, with
subsequent messages arriving every 2 seconds.

Man_ex_6 - fifos

This example shows how easy it is to have several tasks all accessing the
same fifo, without having to worry about corruption through simultaneous
access attempts.

Two tasks place entries on the QUEUEL fifo at different rates, where each
entry includes the task ID of the sending task. The server task waits for
entries to appear in QUEUEL, when it reads the entry and prints a message
on the host to show where the entry originated.

When you run this example you will see messages on the Host Server
display showing the rates at which the clients are generating fifo entries.

Man_ex_7 - multiprocessing

If your target board only has one processor you will not be able to run this
example.

Example 7 is similar to example 6 except that it runs on two processors.
You can see from the source file that the code for the client and server
tasks is identical.

If you look at the project file, you see that there are now two nodes defined.
The first contains the CLIENT1 task and the fifo, while the second contains
the CLIENT2 task and the SERVER task.

2.7.2 Example applications

If you want to know more about Virtuoso, the best thing to do is to run the
examples applications in the folder:

VIRTDIR\<processor>\<compiler>\<board>\category>
and study the source in the folder:

VIRTDIR\<processor>\sources

VUG41R200B1 [11999 Eonic Systems, Inc 1'57

Other examples

The example applications supplied with Virtuoso tell you something about
your Virtuoso system, and they also demonstrate some useful programming
techniques. The examples are board specific, so some examples may not
be available, or others may be included. If the board is available with
different numbers of processors, there will be examples for each variant.
The examples are designed for a particular number of processors: the
examples for single processors have the extension .1p; those for two
processors .2p, and so on.

Here are some brief descriptions of the examples.

Benchmark examples (Benchmrk folder)

Event

This tests all functionality for event objects, including enable, disable,
signal while enabled and disabled, and error checking. The results are
output on the host console.

HstBench

This measures the throughput over the host interface in two ways. First it
calls a simple function (call_server) from the root node which shows the
speed of the direct connection to the Host Server. Second, it does the same
test using another function (process_cmd) that sends a message to the
host 1/O driver task, which then calls the Host Server. This shows the power
of the Virtual Single Processor feature, since the calling task resides either
on the root node or on another node — but there is no difference in the
source code. The benchmarks send output to the host console, and to a
(Borland’s Graphical Interface (BGI) graphic window.

KSBench

This tests most of the kernel services. First it enters and exits the kernel,
showing the raw response times. It then does mailbox transfers, fifo
transfers, semaphore signaling, resource locking, memory pool and
memory map requests. This test is a good indicator of Virtuoso's kernel
performance.

1'58 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

RawDMA and RawSPORT

These show the impact of data packet sizes on performance. One MWord
is transferred between processors in increasingly large packets, starting
with 1 Word packets and doubling in size until the packet size is 16K
Words. The effect is to show transfers that start very slowly and get
exponentially faster.

Stdio

This just reads a file and sends it to the host screen in different ways. It
uses fstats among other things, and does a small benchmark of host I/O
operations. It is a good test for proper operation of host service modules
and other parts of the Host Server.

Txd and Txdr

These are two versions of a data transfer test using KS_memcopy. One
MWord is transferred between processors in increasingly large packets,
starting at 1 Word and doubling in size until it reaches 16K Words. The TXD
task sends the data, the TXDR task requests the data. At the end of the test
there is a graphic showing throughput and number of packets transferred.

Demonstration examples (demo folder)

Debug versions of these programs are in the demo.dbg folder.

Balls

This is a simulation of charged particles moving in a field containing a force
perpendicular to the particle’s velocity. The charge strength and the force
are input as application arguments to the program in the Host Server. Try
entering 5 for the charge strength and 12 for the force, ie.

Application Argumentz
[|512

The example shows how flexible mailboxes are. Each ball is a task that
sends the ball position and velocity to a master task. The info field of the
message structure contains the ball’s id. (See book 2 for more information

VUG41R200B1 [11999 Eonic Systems, Inc 1'59

Other examples

1-60

about the message structure K_MSG). The master task puts the position,
velocity and id of each ball into an array and sends it to each ball. So each
ball knows about all the other balls and can calculate its own next position.
The movements of the balls are shown in a graphic window.

Latency

This is often used to show the real-time characteristics of the operating
system. The example measures the delay between an interrupt coming in to
a processor and the point at which the application begins to process the
interrupt. The results are shown in a histogram. There are options in the
graphic window to: activate the balls example in the background (to
simulate a higher workload); to initiate interprocessor data transfers (to
stress the communications network); to run calculations on each processor
(to simulate a saturated system); to switch between the different levels of
the kernel; to write the data to a file; and to display the min, P15 and max of
the histogram.

Mandel

This is a simple example of a controlling task that farms out processing
tasks. The master task divides the complex plane into subsections and puts
packets of work onto a fifo. The processing tasks get the packets from the
fifo, execute it, and send the output to a plot task that draws the Mandelbrot
set on the screen.

Tim

This shows how to use the Virtuoso system timer services. A timer located
on the first node is started with a cyclic period. Every time it expires, a
semaphore is signalled. A master task waits for the semaphore, and when it
has been signalled, the master task signals four other semaphores. There
is a separate LED task for each semaphore which:

» waits for the semaphore
e increments an internal counter

e if the counter == modulo count, sets the counter = 0 and signals the
semaphore for following LED

e updates the display

VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

2.8 Some programming hints

Virtuoso has many good qualities. For example, it encourages task-
centered programming: tasks are generally more efficient and more
manageable than monolithic applications. It separates application code
from configuration operations so that it is easy to run the same application
on a different number of processors or even on different makes or types of
processors. It has tools that make configuring, running and debugging
applications easy.

But you still have to write the code.. here are some general techniques that
will help you write better Virtuoso applications. Book 2 of the user guide
also contains some tips about programming.

2.8.1 General

Reading the processor supplement

READ the processor supplement!

Using Virtuoso services

Always use Virtuoso services and functions from the Virtuoso libraries. Use
of other functions will destabilize the scheduler.

Initializing Virtuoso objects

You don’t have to. The values of objects like semaphores, events and
resources are reset to zero on boot up.

Locating tasks

While it is possible to locate tasks on any processor (node), you should be
aware that all inter-processor communication incurs an overhead. Put
related tasks and objects on the same processor if possible, to reduce the
overhead.

VUG41R200B1 [11999 Eonic Systems, Inc 1'61

Some programming hints

Using internal Ids

Don't use the variables KS_taskld and KS_nodeld instead of the task
names in your code, they may change.

Similarly, don’t assume the root node is node 0 — it usually is, but doesn’t
have to be.

Working with size parameters

Virtuoso supports processors that allow byte aligned addressing as well as
processors that only allow word aligned addressing. This can cause a
problem because the sizeof() function always gives the size of a char as the
difference between consecutive addresses.

For example, on a processor like the Motorola 96K, a char is represented
as a 32bit word (with the leftmost 8bits containing the char) and this has a
size of 1. This can be a problem when transferring code between two
different types of processors.

Defining variables

Define variables in the project file. The generator then inserts a #define for
them in the header file and they can be used anywhere in the task code.

Understanding packets

Data is sent round the system in packets. The number of packets to be
made available is specified for each node in the project file. There are three
types:

« command packets are used to send commands between nodes, to
implement timer operations and to build waiting lists. A command
packet is 20 words. Usually, four or five command packets per node is
a good choice

» data packets are used to buffer data on intermediate nodes when
data is transferred between indirectly connected nodes. Each packet
is assigned the priority of the sending task. In diagram 1 of the figure
on page 1-65, data packets are only needed on processors 2, 3 and
4. The size of data packets is defined as a global variable in the
system folder of the project file. Usually, four packets of 2k bytes is a
good starting choice, but we recommend the use of the Task Level

1'62 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

Debugger to optimize packet use. While larger packets may be faster
for sending single messages, they may block the channel while higher
priority packets are waiting

timer packets are used for kernel level timer operations. One timer
packet and one command packet are required for each timeout
operation requested by a task

In most cases, timeouts are executed on the node where the timed-out
object resides; so timer packets should be allocated there, and not on the
node where the requesting task is.

The exception is a wait request using KS_SemaGroupTestWT, where the
timeout is executed on the requesting task’s node.

Using structs

You can use structs such as K_FIFO in your code. If you pass the fifo name
in the struct, it is translated from an integer to an UNS 32 in allnodes.h and
node#.h. See book 2 of the user guide for information about Virtuoso
structs.

Creating application folders

It is now a simple process to create applications in folders other than the
default folder. To create an application in a different folder:

create a new folder for the application

copy an NLI file, a makefile and an architecture file to the new folder.
You can use the NLI file from the VIRTDIR\default folder; and a
makefile and architecture file from any of the examples, although the
architecture file may not be optimal for your application. You should
use a makefile from an example designed for the number of
processors on your target board

Start the Virtuoso Project Manager
Select File | New and specify the NLI file in the new folder
Use the Project Manager to specify the application

Select File | Save and specify the new folder

VUG41R200B1 [11999 Eonic Systems, Inc 1'63

Some programming hints

Using the command line
Much development can be done from the command line. For example:
* you can run the Virtuoso editor (vseditor.exe)

* you can edit Virtuoso project files, which are text files just like the NLI,
ach, and make files

* you can run the generate utility with the command
generator infile

where infile is a pre-processed project file.

2.8.2 Links and netlinks

Using onboard links

Use onboard direct links whenever possible if you want the fastest possible
communication. Use offboard links only to communicate with other boards
and external devices.

Virtuoso does not use the cluster buses at the present time.

Creating the correct topology

When Virtuoso reads the NLI and project files it establishes the shortest
paths between non-adjacent processors using the netlinks declared in the
project file. It just counts the number of intervening processors. Once
determined, those paths are static unless the project file is changed.

Virtuoso then uses the shortest path when transferring data between
processors. If there are two or more paths that are equally short, all are
used and the data is divided equally between them.

1'64 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

1 Fl 3 @]
& Bl ©
é Tr 3 @l 5
Z]
&] [

K

J

]
M

These three diagrams show some netlinks joining processors. All paths
between processors 1 and 5 are equally short so:

Diagram 1: 1-2-3-4-5 gets 100% of the traffic

Diagram 2: 1-A-B-C-5 gets 50%, 1-2 gets 50%, 2-3-4 gets 25%, 2-Z-4 gets
25%, 4-5 gets 50%

Diagram 3: Here, directionality has an effect. Data traffic is divided
according to the links available on the originating processor. So, if all links
are bidirectional, with data originating on processor 1.

1-A-B-C-5 gets 50%, 1-2-3 gets 50%, 3-4-5 gets 25%, 3-Z-5 gets 25%
And with data originating on processor 5:

5-C-B-A-1 gets 33.3%, 5-4-3 gets 33.3%, 5-Z-3 gets 33.3%, 3-2-1 gets
66.6%

2.8.3 Drivers

Most embedded applications need you to write drivers as well as
applications. Drivers are low level programs that provide generic or
particular access to hardware. They have an associated startup program

VUG41R200B1 [11999 Eonic Systems, Inc 1'65

Some programming hints

that installs any ISRs, starts processes and so on. The startup program
must be declared in the project file driver definition. The default drivers are
declared in nodetype.h.

If you need to write your own driver, you need to program on the lower
levels of Virtuoso:

* ISR level — the interrupt handling part of your application
» system kernel level — supporting processes

The system kernel offers very high performance and very low code size. Its
functionality is limited, and processes are normally programmed in
assembly language, although, if necessary, processes can be written in C.
See the description of the system kernel in book 2 for more details.

In the crash course you used two kinds of drivers:

* ahostdriver: You can only do the crash course if you have a board
we can support out of the box, ie a commercially available (COTS)
board. If you have a custom board you normally need to write your
own host driver if you want to use the Virtuoso host capabilities
(_stdio.h etc.), although you can use a COTS board as a gateway to
your custom board — see the chapter about Boot methods in book 3

« anetlink driver; We can only support netlink drivers that we supply
There are three other types of driver:

» rawlink driver: This is a driver used by an application for sending or
receiving data over a hardware channel (linkport, serial port, and so
on). We supply some rawlink drivers, and you can write your own

» timer driver: We can only support timer drivers that we supply
» user driver: This is entirely application-specific

For the list of drivers already implemented for your processor, see the
processor supplement.

1'66 VUG41R200B1 [11999 Eonic Systems, Inc

Virtuoso user guide: book 1

2.9 Services that do not cause a task

switch

Misc KS_Linkin KS_IRQSetHandler
KS_Linkout KS_SchedulerSetSliceperiod
KS_ISREnable KS_MemCpyA
KS_ISRDisable

Event KS_EventSetHandler KS_EventDisable
KS_EventEnable

Fifo None

Mail KS_MsgPutA

Memory None

pool

Memory KS_MapStatus

map

Resource None

Semaphore | KS_SemaReset KS_SemaGroupReset

Task KS_TaskID KS_TaskGroupLeave
KS_TaskPrio KS_NodelD
KS_TaskGroupMask KS_TaskSetEntry
KS_TaskGroupJoin KS_TaskSetAbortHandler

Timer KS_HighTimerRead KS_LowTimerGet
KS_LowTimerRead KS_LowTimerStart
KS_LowTimerFree KS_LowTimerRestart
KS_LowTimerElapsed KS_LowTimerStop

Workload KS_WorkloadSetPeriod KS_WorkloadRead

VUG41R200B1 [11999 Eonic Systems, Inc

1-67

Services that do not cause a task switch

1 End of book

1'68 VUG41R200B1 [11999 Eonic Systems, Inc

	Introduction
	What you get with Virtuoso
	License
	Help for Virtuoso application developers
	Virtuoso tools
	Virtuoso Project Manager
	Virtuoso Host Server
	Virtuoso Task Level Debugger
	Virtuoso Tracing Monitor
	Host Extension Kit (HEK)

	Glossary of terms

	Crash course
	The key points
	Preparation
	Where to find the example files
	Preparing source files

	Hello world–
	Inter-task communication
	Inter-processor communication
	Summary
	Other examples
	Example code
	Example applications

	Some programming hints
	General
	Links and netlinks
	Drivers

	Services that do not cause a task switch

