

Nucleus PLUSNucleus PLUSNucleus PLUSNucleus PLUS
InternalsInternalsInternalsInternals

0001027-001 Rev. 102

Copyright (c) 2002
Accelerated Technology

Embedded Systems Division
of Mentor Graphics

720 Oak Circle Dr. E.
Mobile, AL 36609

(251) 661-5770

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

ii

PrefacePrefacePrefacePreface

 iii

Related DocumentationRelated DocumentationRelated DocumentationRelated Documentation

Nucleus PLUS Reference Manual, by Accelerated Technology, describes the operation
and usage of the Nucleus PLUS kernel.

Style and Symbol ConventionsStyle and Symbol ConventionsStyle and Symbol ConventionsStyle and Symbol Conventions
Program listings, program examples, filenames, menu items/buttons and interactive
displays are each shown in a special font.
Program listings and program examples - Courier New
Filenames - COURIER NEW, ALL CAPS
Interactive Command Lines - Courier New, Bold
Menu Items/Buttons � Times New Roman Italic

TrademarksTrademarksTrademarksTrademarks

 MS-DOS is a trademark of Microsoft Corporation
 UNIX is a trademark of X/Open
 IBM PC is a trademark of International Business Machines, Inc.

Additional AssistanceAdditional AssistanceAdditional AssistanceAdditional Assistance

For additional assistance, please contact us at the following:

Accelerated Technology
720 Oak Circle Drive, East
Mobile, AL 36609
800-468-6853
251-661-5770
251-661-5788 (fax)
support@acceleratedtechnology.com
http://www.acceleratedtechnology.com

 Copyright (©) 2002, All Rights Reserved.
 Document Part Number: 0001027-001 Rev. 102
 Last Revised: May 13, 2002

mailto:support@acceleratedtechnology.com
http://www.acceleratedtechnology.com/

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

iv

 v

Chapter 1 - Introduction...1

Purpose of Manual.. 2
About Nucleus PLUS ... 2
Nucleus PLUS Construction... 2

Chapter 2 � Implementation Conventions ...3
Components.. 4
Component Composition.. 5

Format .. 5
Prologue.. 6
After the Prologue .. 7
Remainder of File ... 7

Naming Conventions .. 8
Component Names ... 8
#define Names .. 8
Structure Names ... 8
Typedef Names... 9
Structure Member Names... 9
Global Variable Names .. 9
Local Variable Names .. 10
Function Names.. 10

Indentation.. 10
Comments... 11

Chapter 3 � Software Overview ..13
Basic Usage .. 13
Basic Usage .. 14

Operation Mode.. 14
Application Initialization.. 14
Include File... 14

Data Types.. 14
Service Call Mapping ... 15

Error Checking ... 15
No Error Checking ... 19
Conditional Compilation .. 21

ContentsContentsContentsContents

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

vi

Library Conditional Flags...22
Library Conditional Values ..23
Application Conditional Flags ..23

Environment Dependencies ..24
Initialization..24
Thread Control..24
Timer Management...24
Nucleus PLUS Include File ..24

Version Control ..25
Chapter 4 � Component Descriptions ..27

Common Services Component (CS)...28
Common Services Files ..28
Common Services Control Block ...28
Common Services Functions ..29

Initialization Component (IN) ..30
Initialization Files ...30
Initialization Functions ...30

Thread Control Component (TC) ...32
Thread Control Files ...33
Thread Control Data Structures ..33
Thread Control Functions ...46

Timer Component (TM) ...80
Timer Files..80
Timer Data Structures...81

Active Timers List ..82
Timer Functions..86

Mailbox Component (MB) ...98
Mailbox Files..98
Mailbox Data Structures ...99
Mailbox Functions ..102

Queue Component (QU)...109
Queue Files ...110
Queue Data Structures ..110

Queue Control Block ..111
Queue Suspension Structure ...113

Queue Functions ...114
Pipe Component (PI) ..121

Pipe Files ..122
Pipe Data Structures ...123
Pipe Functions ..126

Semaphore Component (SM) ...136
Semaphore Files ...137
Semaphore Data Structures...138
Semaphore Functions ...141

Event Group Component (EV) ...147
Event Group Files ...147
Event Group Data Structures ..148
Created Event Group List ...148

PrefacePrefacePrefacePreface

 vii

Created Event Group List Protection.. 148
Total Event Groups... 149
Event Group Control Block.. 149
Event Group Suspension Structure... 150
Event Group Functions... 151

Partition Memory Component (PM)... 157
Partition Memory Files... 157
Partition Memory Data Structures .. 158
Partition Memory Functions ... 164

Dynamic Memory Component (DM) ... 170
Dynamic Memory Files .. 171
Dynamic Memory Data Structures ... 172
Dynamic Memory Functions .. 178

Input/Output Driver Component (IO).. 185
Input/Output Driver Files ... 185
Input/Output Data Structures.. 186

Total Input/Output Drivers ... 188
Input/Output Driver Functions ... 192

History Component (HI)... 197
History Files ... 197
History Data Structures .. 197
History Functions ... 199

Error Component (ER) ... 201
Error Files... 201
Error Data Structures .. 202
Error Functions... 202

License Component (LI)... 203
License Files... 203
License Data Structures .. 203
License Functions... 203

Release Component (RL) ... 204
Release Files... 204
Release Data Structures .. 204
Release Functions... 205

Appendix A � Nucleus PLUS Constants ...207

Appendix B � Fatal System Errors ..215

Appendix C � I/O Driver Structure Requests ..217

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

viii

 1

1

Chapter 1 - Introduction

Purpose of ManualPurpose of ManualPurpose of ManualPurpose of Manual

 About Nucleus PLUSAbout Nucleus PLUSAbout Nucleus PLUSAbout Nucleus PLUS

 Nucleus PLUSNucleus PLUS Nucleus PLUSNucleus PLUS
ConstructionConstructionConstructionConstruction

IntroductionIntroductionIntroductionIntroduction

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

2

Purpose of ManualPurpose of ManualPurpose of ManualPurpose of Manual

Nucleus PLUS is delivered in source code form. Since the source code for Nucleus
PLUS is quite large, a typical user would have a difficult time making any sense out of it.
This manual is designed to help Nucleus PLUS users understand the source code.

AbouAbouAbouAbout Nucleus PLUSt Nucleus PLUSt Nucleus PLUSt Nucleus PLUS

Nucleus PLUS is a real-time, preemptive, multitasking kernel designed for time-critical
embedded applications. Approximately 95% of Nucleus PLUS is written in ANSI C.
Because of this, Nucleus PLUS is extremely portable and is currently available for use
with most microprocessor families.

Nucleus PLUS is typically implemented as a C library. Real-time Nucleus PLUS
applications are linked with the Nucleus PLUS library. The resulting object may be
downloaded to the target or placed in ROM. In a typical target environment, the binary
image of the Nucleus PLUS instruction area, assuming all services are used, requires
roughly 20 Kbytes of memory.

Nucleus PLUS ConstructionNucleus PLUS ConstructionNucleus PLUS ConstructionNucleus PLUS Construction

Accelerated Technology�s software development practices facilitate clarity,
modularity, reliability, reusability, and ease of maintenance. Nucleus PLUS is comprised
of multiple software components. Each software component has a unique purpose and a
specific external interface to other components. The composition of each Nucleus PLUS
software component is discussed in greater detail in subsequent chapters.

 ComComComCom

 NNNN

Chapter 2 � Implementation Conventions

2

Implementation Implementation Implementation Implementation
ConventionsConventionsConventionsConventions
 ComponentsComponentsComponentsComponents

ponent Compositionponent Compositionponent Compositionponent Composition

aming Conventionsaming Conventionsaming Conventionsaming Conventions

 IndentationIndentationIndentationIndentation

 CommentsCommentsCommentsComments
3

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

4

ComponentsComponentsComponentsComponents

Accelerated Technology (ATI) uses a software component methodology. A software
component has a single, clear purpose. Software components are typically comprised of
several C and/or assembly language files. Each software component provides a well-
defined external interface. Utilization of a component is accomplished through use of its
external interface. With few exceptions, access to global data structures within a
component is not allowed outside of the component. Because of this component
methodology, Nucleus PLUS software components are both easy to replace and easy to
re-use

Chapter 2 Chapter 2 Chapter 2 Chapter 2 ---- Implementation Conventions Implementation Conventions Implementation Conventions Implementation Conventions

 5

Component CompositionComponent CompositionComponent CompositionComponent Composition

A software component is typically comprised of an include file for data type
definitions and constants, an include file for the component�s external interfaces, and one
or more C and/or assembly files. Component file names conform to the following
conventions:

File Meaning
XX_DEFS.H Component constants and data structures are

defined in this file.
XX_EXTR.H External interfaces to the component are defined in

this file. These interfaces are defined in terms of
function prototypes.

XXD.C Static and global data structures within the
component are defined in this file. With few
exceptions, data structures of one component are
only accessed from functions within the component.

XXI.C The component initialization function is defined in
this file.

XXF.C This file contains functions that provide status
information about objects managed by the
component.

XXC.C This file contains the core functions of the
component.

XXCE.C This file contains the error-checking shell functions
for the core functions.

XXS.C Supplemental functions for the component are
defined in this file.

XXSE.C Error-checking functions for the supplemental
component functions are defined in this file.

NOTE: xx represents the two-letter name of the component. A component does
not necessarily have every possible type of file.

FormatFormatFormatFormat
All software source files have the same fundamental format. The first part of the file
contains general information about the file and is called the prologue. The second part of
the files is dedicated to internal data declarations and internal function prototyping. The
remaining part of the file contains the actual functions.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

6

PrPrPrPrologueologueologueologue

The purpose of the prologue is to describe the contents of the file, identify ATI as the
owner of the file, and to provide information about revisions to the file.

An example of the prologue format follows:

/***/
/* */
/*Copyright (c) 199x by Accelerated Technology */
/* */
/* the subject matter of this material. All manufacturing, */
/* reproduction, use, and sales rights pertaining to this subject */
/* matter are governed by the license agreement. The recipient of */
/* this software implicitly accepts the terms of the license. */
/* */
/* */
/***/
/***/
/* FILE NAME VERSION */
/* */
/* [name of this file] n.n */
/* */
/* COMPONENT */
/* */
/* [identifies the component] */
/* */
/* DESCRIPTION */
/* */
/* [general description of this file] */
/* */
/* AUTHOR */
/* */
/* [author’s name] */
/* */
/* DATA STRUCTURES */
/* */
/* [global component data structures defined in this file] */
/* */
/* FUNCTIONS */
/* */
/* [functions defined in this file] */
/* */
/* DEPENDENCIES */
/* [other file dependencies] */
/* */
/* HISTORY */
/* */
/*NAME DATE REMARKS */
/* [information about revising and verifying changes to this file] */
/***/

Chapter 2 Chapter 2 Chapter 2 Chapter 2 ---- Implementation Conventions Implementation Conventions Implementation Conventions Implementation Conventions

 7

After the PrologueAfter the PrologueAfter the PrologueAfter the Prologue

The area after the prologue is reserved for constants, global data structure definitions, and
inter-component function prototypes. Of course, include files only define
component data structure types or external interfaces.

RemaindeRemaindeRemaindeRemainder of Filer of Filer of Filer of File

The remainder of a software component file consists of C or assembly language
functions. Each function is preceded by a description block. The format of a function
description block follows:

/***/
/* FUNCTION */
/* */
/* [name of the function] */
/* */
/* DESCRIPTION */
/* */
/* [general description of function] */
/* */
/* AUTHOR */
/* */
/* [author’s name] */
/* */
/* CALLED BY */
/* [functions that call this function] */
/* CALLS */
/* */
/* [functions called by this function] */
/* */
/* INPUTS */
/* */
/* [inputs to the function] */
/* */
/* OUTPUTS */
/* [outputs of this function] */
/* */
/* HISTORY */
/* */
/* NAME DATE REMARKS */
/* */
/* [information about revising and verifying changes to this function] */
/* */
/***/

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

8

Naming ConventionsNaming ConventionsNaming ConventionsNaming Conventions

Naming conventitons are intended to make examination of the ATI source code less
painful by incorporating the first three or four characters of the file name into global
variable and function names. Of course, all names correspond to their usage. Detailed
descriptions of the naming conventions are described in the following sub-sections.

Component NamesComponent NamesComponent NamesComponent Names

Component names are generally limited to two characters. The component name is used
as the first two characters of each file that makes up the component.

Example:

Dynamic Memory Management Component Name: DM
Files that comprise DM:

DM_DEFS.H
DM_EXTR.H
DMC.C
DMCE.C
DMI.C
DMF.C
DMD.C

#define Names#define Names#define Names#define Names

Defines are comprised of underscores, capital letters, and numeric characters. The
maximum length of a define is 31 characters. Additionally, the first three characters of a
define are �CC_� where �CC� is the same as the first two letters of the file name where
the define is located.

Example (for file EX_DEFS.H):

#define EX_MY_CONSTANT 10

Structure NamesStructure NamesStructure NamesStructure Names

Structure names are comprised of underscores, capital letters, and numeric characters.
The maximum length of a structure name is 31characters. Additionally, the first three
characters of a structure name are �CC_� where �CC� is the same as the first two letters
of the file name where the structure is defined.

Example (for file EX_DEFS.H):

struct EX_MY_STRUCT
{
 int ex_member_a;
 int ex_member_b;
 int ex_member_c;
};

Chapter 2 Chapter 2 Chapter 2 Chapter 2 ---- Implementation Conventions Implementation Conventions Implementation Conventions Implementation Conventions

 9

Typedef NamesTypedef NamesTypedef NamesTypedef Names

Typedef names are comprised of underscores, capital letters, and numeric characters.
The maximum length of a typedef name is 31characters. Additionally, the first three
characters of a typedef name are �CC_� where �CC� is the same as the first two letters
of the file name the typedef is defined in.

Example (for file EX_DEFS.H):

typedef struct EX_MY_STRUCT
{
 int ex_member_a;
 int ex_member_b;
 int ex_member_c;
} EX_MY_TYPEDEF;

Structure Member NamesStructure Member NamesStructure Member NamesStructure Member Names

Structure member names are comprised of underscores, lower-case letters, and
numeric characters. The maximum length of structure member names is 31characters.
Additionally, the first three characters of a structure member are defined as �CC_�
where �CC� is the same as the first two letters of the �CC_DEFS.H� file that contains
the structure definition.

Example (for file EX_DEFS.H):

struct EX_MY_STRUCT
{
 int ex_member_a;
 int ex_member_b;
 int ex_member_c;
};

Global Variable NamesGlobal Variable NamesGlobal Variable NamesGlobal Variable Names

Nucleus Plus global variable names are comprised of underscores, a single upper case
character following each underscore, lower case characters, and numeric characters. The
maximum length of a global variable name is 31characters. Additionally, the first three
letters of a global variable name are defined as �CCC� where �ccc� is the same as the
first three letters of the �CCC.C� file that contains the actual variable declaration.

Example (for file EXD.C):

int EXD_Global_Integer;

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

10

Local Variable NamesLocal Variable NamesLocal Variable NamesLocal Variable Names

Local variable names (names for variables defined inside the context of a C function) are
comprised of lower-case characters and possibly underscores and/or numeric characters.
The maximum length of a local variable name is 31characters. Local variable names are
not required to take the first three characters of the file they are defined in.

Example (for file EXD.C):

/* Assume the following declaration is inside a function. */
 int i;

Function NamesFunction NamesFunction NamesFunction Names

Nucleus Plus function names are comprised of underscores, a single upper case character
following each underscore, lower case characters, and numeric characters. The
maximum length of a function name is 31characters. Additionally, the first three
characters of a function name are the same as those of the file that contains the function
definition.

Example (for file EXD.C):

void EXD_My_Function(unsigned int i)
{
 .
 .
 .
}

IndentationIndentationIndentationIndentation

The basic unit of indentation is 4 spaces. Function declarations, variable declarations,
and conditional compilation constructs start at column 1. Actual instructions start at
column 4.

NOTE: the braces { and } are on separate lines. The { brace has the same
indentation as the previous line, while the } brace lines up with the previous {
brace.

Example (for file EXD.C):

void EXD_Example_Function(int i, int b)
{

unsigned int a;
char b;

 /* Actual instructions start. */
 i = 0;
 while (i < 100)
 {
 /* Increment i. */
 i = i + 1;
 }
}

Chapter 2 Chapter 2 Chapter 2 Chapter 2 ---- Implementation Conventions Implementation Conventions Implementation Conventions Implementation Conventions

 11

CommentsCommentsCommentsComments

Comments are one of the most important features of the Nucleus PLUS source code.
They are used in a meaningful and plentiful manner. There are two principal types of
comments in ATI software. The first type of comment starts at the current indentation,
while the second type of comment starts at column 45.

Example:

/* This is the first type of meaningful comment. */
i = 10;
j++; /* This is the second type of comment. */

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

12

 Service CService CService CService C

 Environment DEnvironment DEnvironment DEnvironment D

 VeVeVeVe

3

 Chapter 3 � Software Overview

Software Software Software Software
OverviewOverviewOverviewOverview
Basic UsageBasic UsageBasic UsageBasic Usage

Data TypesData TypesData TypesData Types

all Mappingall Mappingall Mappingall Mapping

ependenciesependenciesependenciesependencies

rsion Controlrsion Controlrsion Controlrsion Control
13

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

14

Basic UsageBasic UsageBasic UsageBasic Usage

Nucleus PLUS is typically implemented as a C library. Real-time Nucleus PLUS
applications are linked with the Nucleus PLUS library. The resulting object may then be
downloaded to the target or placed in ROM.

PLUS.LIB is typically the file name of the Nucleus PLUS library. This is built with the
batch file PLUS.BAT. The contents of PLUS.BAT are specific to the development tool
being used.

Operation ModeOperation ModeOperation ModeOperation Mode

In processor architectures that have both supervisor and user modes of operation,
Nucleus PLUS application tasks typically run in supervisor mode. This is because
application tasks make direct calls to operating system services that utilize privileged
instructions. This method reduces service call overhead and is also much easier to
implement. Of course, this method allows the tasks to access anything and everything.

Application InitializationApplication InitializationApplication InitializationApplication Initialization

The user is responsible for providing its own initialization routine, which is called
Application_Initialize. This routine should create the tasks, queues, and other
system objects that are required when the system starts. If the application does not utilize
dynamic creation/deletion of system objects during run-time, all of the required system
objects may be created in Application_Initialize. Multitasking begins
immediately after the user�s Application_Initialize routine returns.

In some target environments, the low-level system initialization files, INT.S, INT.ASM,
or INT.SRC may require modification. These files initialize the system timer interrupt,
available memory, and other entities that are inherently processor or board specific.

Include FileInclude FileInclude FileInclude File
All user code that references Nucleus PLUS services and/or data types, must include the
file NUCLEUS.H. This file contains data type definitions, constant definitions, and
function prototypes for all of the Nucleus PLUS services. This file is specific to each
port of Nucleus PLUS.

Data TypesData TypesData TypesData Types

Nucleus PLUS defines several standard data types in the file NUCLEUS.H. These data
types are guaranteed to remain constant in capability by assigning the appropriate target
C compiler�s basic data type. Therefore, Nucleus PLUS can perform in an identical
manner on a variety of target environments.

Chapter 3 Chapter 3 Chapter 3 Chapter 3 ---- Software Overview Software Overview Software Overview Software Overview

 15

The following data types are defined by Nucleus PLUS:

Data Type Meaning
UNSIGNED This is required to be a 32-bit unsigned integer. It is usually

defined as an unsigned long C data type.
SIGNED This is required to be a 32-bit signed integer. It is usually

defined as a signed long C data type.
OPTION Smallest data type that is easily manipulated - usually an

unsigned char C data type.
DATA_ELEMENT Same as the previous OPTION data type.
UNSIGNED_CHAR This data type is required to be an 8-bit unsigned character.
CHAR This data type is required to be an 8-bit character.
STATUS Equivalent to target C compiler�s signed int data type.
INT An integer data type that corresponds to the natural word size

of the underlying architecture.
VOID Equivalent to target C compiler�s void data type.
UNSIGNED_PTR This data type is a pointer to an UNSIGNED data type.
BYTE_PTR This data type is a pointer to an UNSIGNED_CHAR data type.

Service Call MappingService Call MappingService Call MappingService Call Mapping

The main Nucleus PLUS include file, NUCLEUS.H, contains function prototypes that
match those defined in the Nucleus PLUS Reference Manual. However, the NU_*
functions do not really exist. For most Nucleus PLUS services, there exists a function
that really does the work and a �shell� function that checks for errors in the user�s request
before calling the real function. Depending on the error checking conditional define,
NU_NO_ERROR_CHECKING, the Nucleus PLUS service call is mapped, through macro
substitution, to the appropriate underlying function. This facilitates complete elimination
of error checking when it is not required.

Error CheckingError CheckingError CheckingError Checking

If the NU_NO_ERROR_CHECKING flag is not defined (default condition), the NU_*
service calls defined in the Nucleus PLUS Reference Manual are mapped to the
following internal functions:

Nucleus PLUS Service Internal Function
NU_Activate_HISR TCCE_Activate_HISR
NU_Allocate_Memory DMCE_Allocate_Memory
NU_Allocate_Partition PMCE_Allocate_Partition
NU_Broadcast_To_Mailbox MBSE_Broadcast_To_Mailbox
NU_Broadcast_To_Pipe PISE_Broadcast_To_Pipe
NU_Broadcast_To_Queue QUSE_Broadcast_To_Queue
NU_Change_Preemption TCSE_Change_Preemption
NU_Change_Priority TCSE_Change_Priority
NU_Change_Time_Slice TCSE_Change_Time_Slice

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

16

Nucleus PLUS Service Internal Function
NU_Check_Stack TCT_Check_Stack
NU_Control_Interrupts TCT_Control_Interrupts
NU_Control_Signals TCSE_Control_Signals
NU_Control_Timer TMSE_Control_Timer
NU_Create_Driver IOCE_Create_Driver
NU_Create_Event_Group EVCE_Create_Event_Group
NU_Create_HISR TCCE_Create_HISR
NU_Create_Mailbox MBCE_Create_Mailbox
NU_Create_Memory_Pool DMCE_Create_Memory_Pool
NU_Create_Partition_Pool PMCE_Create_Partition_Pool
NU_Create_Pipe PICE_Create_Pipe
NU_Create_Queue QUCE_Create_Queue
NU_Create_Semaphore SMCE_Create_Semaphore
NU_Create_Task TCCE_Create_Task
NU_Create_Timer TMSE_Create_Timer
NU_Current_HISR_Pointer TCF_Current_HISR_Pointer
NU_Current_Task_Pointer TCC_Current_Task_Pointer
NU_Deallocate_Memory DMCE_Deallocate_Memory
NU_Deallocate_Partition PMCE_Deallocate_Partition
NU_Delete_Driver IOCE_Delete_Driver
NU_Delete_Event_Group EVCE_Delete_Event_Group
NU_Delete_HISR TCCE_Delete_HISR
NU_Delete_Mailbox MBCE_Delete_Mailbox
NU_Delete_Memory_Pool DMCE_Delete_Memory_Pool
NU_Delete_Partition_Pool PMCE_Delete_Partition_Pool
NU_Delete_Pipe PICE_Delete_Pipe
NU_Delete_Queue QUCE_Delete_Queue
NU_Delete_Semaphore SMCE_Delete_Semaphore
NU_Delete_Task TCCE_Delete_Task
NU_Delete_Timer TMSE_Delete_Timer
NU_Disable_History_Saving HIC_Disable_History_Saving
NU_Driver_Pointers IOF_Driver_Pointers
NU_Enable_History_Saving HIC_Enable_History_Saving
NU_Established_Drivers IOF_Established_Drivers
NU_Established_Event_Groups EVF_Established_Event_Groups
NU_Established_HISRs TCF_Established_HISRs
NU_Established_Mailboxes MBF_Established_Mailboxes
NU_Established_Memory_Pools DMF_Established_Memory_Pools
NU_Established_Partition_Pools PMF_Established_Partition_Pools
NU_Established_Pipes PIF_Established_Pipes
NU_Established_Queues QUF_Established_Queues
NU_Established_Semaphores SMF_Established_Semaphores

Chapter 3 Chapter 3 Chapter 3 Chapter 3 ---- Software Overview Software Overview Software Overview Software Overview

 17

Nucleus PLUS Service Internal Function
NU_Established_Tasks TCF_Established_Tasks
NU_Established_Timers TMF_Established_Timers
NU_Event_Group_Information EVF_Event_Group_Information
NU_Event_Group_Pointers EVF_Event_Group_Pointers
NU_Get_Remaining_Time TMF_Get_Remaining_Time
NU_HISR_Information TCF_HISR_Information
NU_HISR_Pointers TCF_HISR_Pointers
NU_License_Information LIC_License_Information
NU_Local_Control_Interrupts TCT_Local_Control_Interrupts
NU_Mailbox_Information MBF_Mailbox_Information
NU_Mailbox_Pointers MBF_Mailbox_Pointers
NU_Make_History_Entry HIC_Make_History_Entry_Service
NU_Memory_Pool_Information DMF_Memory_Pool_Information
NU_Memory_Pool_Pointers DMF_Memory_Pool_Pointers
NU_Obtain_Semaphore SMCE_Obtain_Semaphore
NU_Partition_Pool_Information PMF_Partition_Pool_Information
NU_Partition_Pool_Pointers PMF_Partition_Pool_Pointers
NU_Pipe_Information PIF_Pipe_Information
NU_Pipe_Pointers PIF_Pipe_Pointers
NU_Protect TCT_Protect
NU_Queue_Information QUF_Queue_Information
NU_Queue_Pointers QUF_Queue_Pointers
NU_Receive_From_Mailbox MBCE_Receive_From_Mailbox
NU_Receive_From_Pipe PICE_Receive_From_Pipe
NU_Receive_From_Queue QUCE_Receive_From_Queue
NU_Receive_Signals TCSE_Receive_Signals
NU_Register_LISR TCC_Register_LISR
NU_Register_Signal_Handler TCSE_Register_Signal_Handler
NU_Release_Information RLC_Release_Information
NU_Release_Semaphore SMCE_Release_Semaphore
NU_Relinquish TCCE_Relinquish
NU_Request_Driver IOCE_Request_Driver
NU_Reset_Mailbox MBSE_Reset_Mailbox
NU_Reset_Pipe PISE_Reset_Pipe
NU_Reset_Queue QUSE_Reset_Queue
NU_Reset_Semaphore SMSE_Reset_Semaphore
NU_Reset_Task TCCE_Reset_Task
NU_Reset_Timer TMSE_Reset_Timer
NU_Restore_Interrupts TCT_Restore_Interrupts
NU_Resume_Driver IOCE_Resume_Driver
NU_Resume_Task TCCE_Resume_Service

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

18

Nucleus PLUS Service Internal Function
NU_Retrieve_Clock TMT_Retrieve_Clock
NU_Retrieve_Events EVCE_Retrieve_Events
NU_Retrieve_History_Entry HIC_Retrieve_History_Entry
NU_Semaphore_Information SMF_Semaphore_Information
NU_Semaphore_Pointers SMF_Semaphore_Pointers
NU_Send_Signals TCSE_Send_Signals
NU_Send_To_Front_Of_Pipe PISE_Send_To_Front_Of_Pipe
NU_Send_To_Front_Of_Queue QUSE_Send_To_Front_Of_Queue
NU_Send_To_Mailbox MBCE_Send_To_Mailbox
NU_Send_To_Pipe PICE_Send_To_Pipe
NU_Send_To_Queue QUCE_Send_To_Queue
NU_Set_Clock TMT_Set_Clock
NU_Set_Events EVCE_Set_Events
NU_Setup_Vector INT_Setup_Vector
NU_Sleep TCCE_Task_Sleep
NU_Suspend_Driver IOCE_Suspend_Driver
NU_Suspend_Task TCCE_Suspend_Service
NU_Task_Information TCF_Task_Information
NU_Task_Pointers TCF_Task_Pointers
NU_Terminate_Task TCCE_Terminate_Task
NU_Timer_Information TMF_Timer_Information
NU_Timer_Pointers TMF_Timer_Pointers
NU_Unprotect TCT_Unprotect

Chapter 3 Chapter 3 Chapter 3 Chapter 3 ---- Software Overview Software Overview Software Overview Software Overview

 19

No Error CheckingNo Error CheckingNo Error CheckingNo Error Checking

If the NU_NO_ERROR_CHECKING flag is defined (usually with a -D compilation switch),
the NU_* service calls defined in the Nucleus PLUS Reference Manual are mapped to
the following internal functions:

Nucleus PLUS Service Internal Function
NU_Activate_HISR TCC_Activate_HISR
NU_Allocate_Memory DMC_Allocate_Memory
NU_Allocate_Partition PMC_Allocate_Partition
NU_Broadcast_To_Mailbox MBS_Broadcast_To_Mailbox
NU_Broadcast_To_Pipe PIS_Broadcast_To_Pipe
NU_Broadcast_To_Queue QUS_Broadcast_To_Queue
NU_Change_Preemption TCS_Change_Preemption
NU_Change_Priority TCS_Change_Priority
NU_Change_Time_Slice TCS_Change_Time_Slice
NU_Check_Stack TCT_Check_Stack
NU_Control_Interrupts TCT_Control_Interrupts
NU_Control_Signals TCS_Control_Signals
NU_Control_Timer TMS_Control_Timer
NU_Create_Driver IOC_Create_Driver
NU_Create_Event_Group EVC_Create_Event_Group
NU_Create_HISR TCC_Create_HISR
NU_Create_Mailbox MBC_Create_Mailbox
NU_Create_Memory_Pool DMC_Create_Memory_Pool
NU_Create_Partition_Pool PMC_Create_Partition_Pool
NU_Create_Pipe PIC_Create_Pipe
NU_Create_Queue QUC_Create_Queue
NU_Create_Semaphore SMC_Create_Semaphore
NU_Create_Task TCC_Create_Task
NU_Create_Timer TMS_Create_Timer
NU_Current_HISR_Pointer TCF_Current_HISR_Pointer
NU_Current_Task_Pointer TCC_Current_Task_Pointer
NU_Deallocate_Memory DMC_Deallocate_Memory
NU_Deallocate_Partition PMC_Deallocate_Partition
NU_Delete_Driver IOC_Delete_Driver
NU_Delete_Event_Group EVC_Delete_Event_Group
NU_Delete_HISR TCC_Delete_HISR
NU_Delete_Mailbox MBC_Delete_Mailbox
NU_Delete_Memory_Pool DMC_Delete_Memory_Pool
NU_Delete_Partition_Pool PMC_Delete_Partition_Pool
NU_Delete_Pipe PIC_Delete_Pipe
NU_Delete_Queue QUC_Delete_Queue
NU_Delete_Semaphore SMC_Delete_Semaphore
NU_Delete_Task TCC_Delete_Task
NU_Delete_Timer TMS_Delete_Timer
NU_Disable_History_Saving HIC_Disable_History_Saving
NU_Driver_Pointers IOF_Driver_Pointers
NU_Enable_History_Saving HIC_Enable_History_Saving
NU_Established_Drivers IOF_Established_Drivers
NU_Established_Event_Groups EVF_Established_Event_Groups

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

20

Nucleus PLUS Service Internal Function
NU_Established_HISRs TCF_Established_HISRs
NU_Established_Mailboxes MBF_Established_Mailboxes
NU_Established_Memory_Pools DMF_Established_Memory_Pools
NU_Established_Partition_Pools PMF_Established_Partition_Pools
NU_Established_Pipes PIF_Established_Pipes
NU_Established_Queues QUF_Established_Queues
NU_Established_Semaphores SMF_Established_Semaphores
NU_Established_Tasks TCF_Established_Tasks
NU_Established_Timers TMF_Established_Timers
NU_Event_Group_Information EVF_Event_Group_Information
NU_Event_Group_Pointers EVF_Event_Group_Pointers
NU_Get_Remaining_Time TMF_Get_Remaining_Time
NU_HISR_Information TCF_HISR_Information
NU_HISR_Pointers TCF_HISR_Pointers
NU_License_Information LIC_License_Information
NU_Local_Control_Interrupts TCT_Local_Control_Interrupts
NU_Mailbox_Information MBF_Mailbox_Information
NU_Mailbox_Pointers MBF_Mailbox_Pointers
NU_Make_History_Entry HIC_Make_History_Entry_Service
NU_Memory_Pool_Information DMF_Memory_Pool_Information
NU_Memory_Pool_Pointers DMF_Memory_Pool_Pointers
NU_Obtain_Semaphore SMC_Obtain_Semaphore
NU_Partition_Pool_Information PMF_Partition_Pool_Information
NU_Partition_Pool_Pointers PMF_Partition_Pool_Pointers
NU_Pipe_Information PIF_Pipe_Information
NU_Pipe_Pointers PIF_Pipe_Pointers
NU_Protect TCT_Protect
NU_Queue_Information QUF_Queue_Information
NU_Queue_Pointers QUF_Queue_Pointers
NU_Receive_From_Mailbox MBC_Receive_From_Mailbox
NU_Receive_From_Pipe PIC_Receive_From_Pipe
NU_Receive_From_Queue QUC_Receive_From_Queue
NU_Receive_Signals TCS_Receive_Signals
NU_Register_LISR TCC_Register_LISR
NU_Register_Signal_Handler TCS_Register_Signal_Handler
NU_Release_Information RLC_Release_Information
NU_Release_Semaphore SMC_Release_Semaphore
NU_Relinquish TCC_Relinquish
NU_Request_Driver IOC_Request_Driver
NU_Reset_Mailbox MBS_Reset_Mailbox
NU_Reset_Pipe PIS_Reset_Pipe
NU_Reset_Queue QUS_Reset_Queue
NU_Reset_Semaphore SMS_Reset_Semaphore
NU_Reset_Task TCC_Reset_Task
NU_Reset_Timer TMS_Reset_Timer
NU_Restore_Interrupts TCT_Restore_Interrupts
NU_Resume_Driver IOC_Resume_Driver

Chapter 3 Chapter 3 Chapter 3 Chapter 3 ---- Software Overview Software Overview Software Overview Software Overview

 21

Nucleus PLUS Service Internal Function
NU_Resume_Task TCC_Resume_Service
NU_Retrieve_Clock TMT_Retrieve_Clock
NU_Retrieve_Events EVC_Retrieve_Events
NU_Retrieve_History_Entry HIC_Retrieve_History_Entry
NU_Semaphore_Information SMF_Semaphore_Information
NU_Semaphore_Pointers SMF_Semaphore_Pointers
NU_Send_Signals TCS_Send_Signals
NU_Send_To_Front_Of_Pipe PIS_Send_To_Front_Of_Pipe
NU_Send_To_Front_Of_Queue QUS_Send_To_Front_Of_Queue
NU_Send_To_Mailbox MBC_Send_To_Mailbox
NU_Send_To_Pipe PIC_Send_To_Pipe
NU_Send_To_Queue QUC_Send_To_Queue
NU_Set_Clock TMT_Set_Clock
NU_Set_Events EVC_Set_Events
NU_Setup_Vector INT_Setup_Vector
NU_Sleep TCC_Task_Sleep
NU_Suspend_Driver IOC_Suspend_Driver
NU_Suspend_Task TCC_Suspend_Service
NU_Task_Information TCF_Task_Information
NU_Task_Pointers TCF_Task_Pointers
NU_Terminate_Task TCC_Terminate_Task
NU_Timer_Information TMF_Timer_Information
NU_Timer_Pointers TMF_Timer_Pointers
NU_Unprotect TCT_Unprotect

Conditional CompilationConditional CompilationConditional CompilationConditional Compilation

The Nucleus PLUS source code has a limited number of conditional compilation options.
There are several options available during compilation of application code. However,
most options are applicable to the creation of the Nucleus PLUS library.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

22

Library Conditional FlagsLibrary Conditional FlagsLibrary Conditional FlagsLibrary Conditional Flags

Conditional compilation flags for the Nucleus PLUS library are usually specified in the
PLUS.BAT batch file. These conditional compilation flags enable various features
within the Nucleus PLUS library source. The conditional compilation options are as
follows:

Compilation Flag Meaning
NU_ENABLE_HISTORY Enable history saving in the specified file. Note: only

files of the form **C.C are affected by this option.
NU_ENABLE_STACK_CHECK Enable stack checking at the beginning of each

function in the specified file. Note: only files of the
form **C.C are affected by this option.

NU_ERROR_STRING Enable making an ASCII error string if a fatal system
error occurs. This flag is applicable to the compilation
of ERD.C, ERI.C, and ERC.C.

NU_NO_ERROR_CHECKING Disable error-checking shell on creation of the timer
HISR in TMI.C. Not applicable to any other Nucleus
PLUS library compilation.

NU_DEBUG Maps the application data structures defined in
NUCLEUS.H to the actual internal data structures used
in Nucleus PLUS. This option allows the user to
examine all Nucleus PLUS data structures directly. All
library files and application files should either use or
not use this option.

NU_INLINE Replaces some linked-list processing with in-line code
in order to improve performance. This option is
applicable to any or all **C.C or **S.C files.

Chapter 3 Chapter 3 Chapter 3 Chapter 3 ---- Software Overview Software Overview Software Overview Software Overview

 23

Library Conditional ValuesLibrary Conditional ValuesLibrary Conditional ValuesLibrary Conditional Values

In addition to the externally defined conditional compilation flags, there are several
conditional compilation values defined in NUCLEUS.H. These values are set up
specifically for each port. Changing any of these values (except the R1, R2, R3, R4
options) should be done with caution. The conditional values are defined as follows:

Compilation Value Meaning
NU_POINTER_ACCESS This value specifies how many separate memory accesses

are required to load and store a data pointer. A value of
one allows an in-line optimization. Any value greater
than one uses a function to load/store certain data pointers
under protection from interrupts.

PAD_1 This value specifies how many bytes of padding should
be added after a single character in a structure.

PAD_2 This value specifies how many bytes of padding should
be added after two consecutive characters in a structure.

PAD_3 This value specifies how many bytes of padding should
be added after three consecutive characters in a structure.

R1, R2, R3, R4 These values are used to place the �register� modifier in
front of frequently used variables in Nucleus PLUS. R1
is used to modify the most frequently used variable. By
defining any of these to �register� the corresponding
variable in the source code is assigned register status.

Application Conditional FlagsApplication Conditional FlagsApplication Conditional FlagsApplication Conditional Flags

There are several conditional flags available when compiling application programs.
Nucleus PLUS application elements may disable error checking on parameters supplied
to Nucleus PLUS services by defining NU_NO_ERROR_CHECKING with a compiler
command line option. This results in a substantial increase in run-time performance, and
also reduces code size.

Application data structures defined in NUCLEUS.H may be mapped directly to the
internal Nucleus PLUS data structures by defining the NU_DEBUG option during
compilation. This allows the user to directly examine the internals of each Nucleus
PLUS data structure within a source-level debugging environment. If the NU_DEBUG
option is used, it is often a good idea to re-build all of the Nucleus PLUS source code
swith the same NU_DEBUG option.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

24

Environment DependenciesEnvironment DependenciesEnvironment DependenciesEnvironment Dependencies

Processor and development tool dependencies in Nucleus PLUS have been isolated to
four files. Three of the files (INT.?, TCT.?, and TMT.?) are written in
assembly language. These files provide the low-level, run-time environment for the
underlying target environment. The third file (NUCLEUS.H) is included, either directly
or indirectly, by all of the files in the system. This file defines various data types and
other processor and development tool specific information.

InitializationInitializationInitializationInitialization

The INT.[S, ASM, or SRC] file is responsible for providing low-level
initialization and services for accessing the processor�s interrupt vector table. This file
also contains default Interrupt Service Routine (ISR) handlers. The function
INT_Initialize is specific to a given target board. For example, if the target
processor is not able to generate an internal timer interrupt, setting up the timer
interrupt becomes board specific. This means that a modified version of INT might be
necessary for different boards even though they share the same processor
architecture.

ThrThrThrThread Controlead Controlead Controlead Control

The TCT.[S, ASM, or SRC] file is primarily responsible for transferring control
between threads and the system. A thread is defined as either a Nucleus PLUS task or a
Nucleus PLUS HISR. This file contains all of the code necessary to perform context
switches between tasks and HISRs. Additionally, this file contains code necessary for
handling protection conflicts and task signals.

Timer ManagementTimer ManagementTimer ManagementTimer Management

The TMT.[S, ASM, or SRC] file is primarily responsible for handling Nucleus PLUS
timer services, including the timer interrupt handler. In most ports, the timer interrupt
handler is designed for low-overhead operation when no timer has expired.

Nucleus PLUS Include FileNucleus PLUS Include FileNucleus PLUS Include FileNucleus PLUS Include File

The NUCLEUS.H include file is included by all Nucleus PLUS source files - either
directly or indirectly. Application files that reference Nucleus PLUS services and/or data
types must also include NUCLEUS.H. This file defines a variety of data types, interrupt
lockout/enable values, the number of interrupt vectors, the size of system control blocks,
and other target specific information.

Chapter 3 Chapter 3 Chapter 3 Chapter 3 ---- Software Overview Software Overview Software Overview Software Overview

 25

Version ControlVersion ControlVersion ControlVersion Control

There are several different version layers in a Nucleus PLUS system. The system version
is defined by the ASCII string RLD_Release_String in the file RLD.C. This version
contains the current version of the generic C source code as well as the version of the
target specific code. For example, the release string for version 1 of the MS-
DOS/Borland target specific code with version 1.13 of the generic code would be:

�Copyright (c) 200x ATI - Nucleus PLUS - DOS Borland C Version
1.13.1�

Nucleus PLUS also has version information for each file. The version information in the
header block of each file identifies the version of that specific file. In many cases, the
version in the file header is quite different than the version of the system. Each function
in a file also contains version information in its header. The version
information specified near the bottom of each function�s header indicates what changes
were made to the function and which version of the file they apply to.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

26

 27

Chapter 4 � Component Descriptions

4

Component Component Component Component
DescriptionsDescriptionsDescriptionsDescriptions

Common Service Component (CS)Common Service Component (CS)Common Service Component (CS)Common Service Component (CS)

Initialization Component (IN)Initialization Component (IN)Initialization Component (IN)Initialization Component (IN)

Thread Control Component (TC)Thread Control Component (TC)Thread Control Component (TC)Thread Control Component (TC)

Timer Component (TM)Timer Component (TM)Timer Component (TM)Timer Component (TM)

Active Timers ListActive Timers ListActive Timers ListActive Timers List

MMMMailbox Component (MB)ailbox Component (MB)ailbox Component (MB)ailbox Component (MB)

Queue Component (QU)Queue Component (QU)Queue Component (QU)Queue Component (QU)

Queue Control BlockQueue Control BlockQueue Control BlockQueue Control Block

Queue Suspension StructureQueue Suspension StructureQueue Suspension StructureQueue Suspension Structure

Pipe Component (PI)Pipe Component (PI)Pipe Component (PI)Pipe Component (PI)

Semaphore Component (SM)Semaphore Component (SM)Semaphore Component (SM)Semaphore Component (SM)

Event Group Component (EV)Event Group Component (EV)Event Group Component (EV)Event Group Component (EV)

Partition Memory Component (PM)Partition Memory Component (PM)Partition Memory Component (PM)Partition Memory Component (PM)

Dynamic Memory Component (DM)Dynamic Memory Component (DM)Dynamic Memory Component (DM)Dynamic Memory Component (DM)

Input/Output Driver Component (IInput/Output Driver Component (IInput/Output Driver Component (IInput/Output Driver Component (IO)O)O)O)

Total Input/Output DriversTotal Input/Output DriversTotal Input/Output DriversTotal Input/Output Drivers

History Component (HI)History Component (HI)History Component (HI)History Component (HI)

Error Component (ER)Error Component (ER)Error Component (ER)Error Component (ER)

License Component (LI)License Component (LI)License Component (LI)License Component (LI)

Release Component (RL)Release Component (RL)Release Component (RL)Release Component (RL)

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

28

This chapter describes various software components of the Nucleus PLUS system. Each
component's files, data structures, and functions are described. Nucleus PLUS is comprised
of 16 distinct components.

Common Services Component (CS)Common Services Component (CS)Common Services Component (CS)Common Services Component (CS)

The Common Services Component (CS) is responsible for providing other Nucleus PLUS
components with linked list facilities. Each Common Service node data
structure is included within other system data structures.

Common Services FilesCommon Services FilesCommon Services FilesCommon Services Files

The Common Services Component (CS) consists of three files. Each source file of the
Common Services Component is defined below.

File Description
CS_DEFS.H This file contains constants and data structure definitions specific

to the CS.
CS_EXTR.H All external interfaces to the CS are defined in this file.
CSC.C This file contains all of the core functions of the CS. Functions

that handle basic place-on-list and remove-from-list services are
defined in this file.

Common Services Control BlockCommon Services Control BlockCommon Services Control BlockCommon Services Control Block

The Common Services Control Block CS_NODE contains the previous and next pointers to
link the Common Services nodes together, and other fields necessary for processing
Common Services requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

struct CS_NODE_STRUCT *cs_previous
struct CS_NODE_STRUCT *cs_next
DATA_ELEMENT cs_priority
DATA_ELEMENT cs_padding[PAD_1]

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 29

Field SummaryField SummaryField SummaryField Summary

Field Description
*cs_previous This is a link in the current node to the previous node structure for

Common Services. It is part of the Common Services list, which
is a doubly linked, circular list.

*cs_next This is a link in the current node to the next node structure for
Common Services. It is part of the Common Services list, which
is a doubly linked, circular list.

cs_priority Denotes the task or HISR priority.
cs_padding This is used to align the Common Services structure on an even

boundary. In some ports this field is not used.

Common Services FunctionsCommon Services FunctionsCommon Services FunctionsCommon Services Functions

The following sections provide a brief description of the functions in the Common Services
Component (CS). Review of the actual source code is recommended for further information.

CSC_Place_On_List

This function places the specified node at the end of the specified doubly linked circular list.

VOID CSC_Place_On_List(CS_NODE **head, CS_NODE *new_node)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

CSC_Priority_Place_On_List

This function places the specified node on the list based upon its priority. The node is placed
after all other nodes on the list of equal or greater priority. Note that lower numerical values
indicate greater priority.

VOID CSC_Priority_Place_On_List(CS_NODE **head, CS_NODE *new_node)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

30

CSC_Remove_From_List

This function removes the specified node from the specified linked list.

VOID CSC_Remove_From_List(CS_NODE **head, CS_NODE *node)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Initialization Component (IN)Initialization Component (IN)Initialization Component (IN)Initialization Component (IN)

The Initialization Component (IN) is responsible for initializing the Nucleus PLUS system.
There are typically two parts to the initialization process. The target-dependent portion is
initialized first and then each Nucleus PLUS component is initialized. The last initialization
routine called is Application_Initialize. The user defines its contents. After
initialization is complete, control is transferred to the scheduling loop, TCT_Schedule.
Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information
about initialization.

Initialization FilesInitialization FilesInitialization FilesInitialization Files

The Initialization Component (IN) consists of three files. Each source file of the
Initialization Component is defined below.

File Description
IN_EXTR.H All external interfaces to the IN are defined in this file.
INC.C This file contains the core function of the IN. The

function that handles the basic system initialization
service is defined in this file.

INT.[S,ASM,SRC] This file contains all of the target dependent functions of
the IN. A sample initialization file is also provided for
user customization purposes.

Initialization FunctionsInitialization FunctionsInitialization FunctionsInitialization Functions

The following sections provide a brief description of the functions in the Initialization
Component (IN). Review of the actual source code is recommended for further
information.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 31

INC_Initialize

This function is the main initialization function of the system. All components are initialized
by this function. After system initialization is complete, the Application_Initialize
routine is called. After all initialization is complete, this function calls TCT_Schedule to
start scheduling tasks.

VOID INC_Initialize(VOID *first_available_memory)

Functions CalledFunctions CalledFunctions CalledFunctions Called

Application_Initialize
RLC_Release_Information
LIC_License_Information
ERI_Initialize
HII_Initialize
TCI_Initialize
MBI_Initialize
QUI_Initialize

INT_Initialize

This is an assembly language function that handles all low-level, target dependent
initialization. Once this function is complete, control is transferred to the target
independent initialization function, INC_Initialize. Responsibilities of this function
include the following:

��Setup of necessary processor/system control registers.

��Initialization of the vector table.

��Setup of the system stack pointer.

��Setup of the timer interrupt.

��Calculation of the timer HISR stack and priority.

��Calculation of the first available memory address.

��Transfer of control to INC_Initialize to initialize all of the system
components.

VOID INT_Initialize(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

INC_Initialize

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

32

INT_Vectors_Loaded

This is an assembly language function, which returns the flag that indicates whether or not
all the default vectors have been loaded. If it is false, each LISR register also loads the ISR
shell into the actual vector table.

INT INT_Vectors_Loaded(void)

Functions CalFunctions CalFunctions CalFunctions Calledledledled

None

INT_Setup_Vector

This is an assembly language function, which sets up the specified vector with the new
vector value. The previous vector value is returned to the caller.

VOID *INT_Setup_Vector(INT vector, VOID *new)

FunctFunctFunctFunctions Calledions Calledions Calledions Called

None

Thread Control Component (TC)Thread Control Component (TC)Thread Control Component (TC)Thread Control Component (TC)

The Thread Control Component (TC) is responsible for managing the execution of
competing, real-time Nucleus PLUS tasks and High Level Interrupt Routines (HISRs). A
Nucleus Plus task is a semi-independent program segment with a dedicated purpose. Most
applications have multiple tasks. In order to control the execution process, tasks are usually
assigned a priority. Nucleus PLUS priorities range from 0 to 255, where 0 is the highest
priority and 255 is the lowest priority. Higher priority tasks are executed before lower
priority tasks. Additionally, a lower priority task may be preempted when a higher priority
task becomes ready, unless preemption has been disabled. Tasks are always in one of five
states: executing, ready, suspended, terminated or finished.

A Nucleus PLUS HISR is a scheduled piece of an ISR that is allowed to interact with
Nucleus PLUS services. HISRs have priorities ranging from 0 to 2, where 0 is the highest
priority. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about the Thread Control Component.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 33

Thread Control FilesThread Control FilesThread Control FilesThread Control Files

The Thread Control Component (TC) consists of nine files. Each source file of the Thread
Control Component is defined below.

File Description
TC_DEFS.H This file contains constants and data structure definitions specific

to the TC.
TC_EXTR.H All external interfaces to the TC are defined in this file.
TCD.C Global data structures for the TC are defined in this file.
TCI.C This file contains the initialization function for the TC.
TCF.C This file contains the information gathering functions for the TC.
TCC.C This file contains all of the core functions of the TC. Functions

that handle basic create-task and delete-task services are defined
in this file.

TCS.C This file contains supplemental functions of the TC. Functions
contained in this file are typically used less frequently than the
core functions.

TCCE.C This file contains the error checking function interfaces for the
core functions defined in TCC.C.

TCSE.C This file contains the error checking function interfaces for the
supplemental functions defined in TCS.C.

TCT.[S,ASM,SRC] This file contains all of the target dependent functions of the TC.

Thread Control Data StructuresThread Control Data StructuresThread Control Data StructuresThread Control Data Structures

Created Tasks ListCreated Tasks ListCreated Tasks ListCreated Tasks List

Nucleus PLUS Tasks may be created and deleted dynamically. The Thread Control Block
(TCB) for each created task is kept on a doubly linked, circular list. Newly created tasks are
placed at the end of the list, while deleted tasks are completely removed from the list. The
head pointer of this list is TCD_Created_Tasks_List.

TCB TCB TCB TCB

TCD_Created_Tasks_List

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

34

Total TasksTotal TasksTotal TasksTotal Tasks

The total number of currently created Nucleus PLUS tasks is contained in the variable
TCD_Total_Tasks. The contents of this variable correspond to the number of TCBs on the
created list. Manipulation of this variable is also done under the
protection of TCD_List_Protect.

Created Task List ProtectiCreated Task List ProtectiCreated Task List ProtectiCreated Task List Protectionononon

Nucleus PLUS protects the integrity of the Created Tasks List from competing tasks and/or
HISRs. This is done by using an internal protection structure called TCD_List_Protect.
All task creation and deletion is done under the protection of TCD_List_Protect.

 Field Declarations Field Declarations Field Declarations Field Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting

for the protection.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 35

Priority ListPriority ListPriority ListPriority List

TCD_Priority_List is an array of TCB pointers. Each element of the array is the head
pointer of the list of tasks ready for execution at that priority. If the priority is NULL, there
are no tasks ready for execution at that priority. The array is indexed by priority.

Priority GroupsPriority GroupsPriority GroupsPriority Groups

TCD_Priority_Groups is a 32-bit unsigned integer that is used as a bit map. Each bit
corresponds to an 8-priority group. For example, if bit 0 is set, at least one task of priority 0
through 8 is ready for execution.

Group 0-7 Group 8-15 Group 16 -23 Group 248-255

TCD_Priority_Groups

Bit 0 Bit 1 Bit 2 Bit 31

. . .

. . .

TCB TCB TCB TCB

TCB TCB

TCB TCB TCB

TCB

. . .
. . .

0

1

2

255

TCD_Priority_List

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

36

SubSubSubSub----Priority GroupsPriority GroupsPriority GroupsPriority Groups

Nucleus PLUS uses sub-priorities to determine the exact priority represented in the bit map.
TCD_Sub_Priority_Groups is an array of sub-priority groups. In this array, index 0
corresponds to priorities 0 through 8. Bit 0 of this element represents priority 0, while bit 7
represents priority 7.

Lowest Bit SetLowest Bit SetLowest Bit SetLowest Bit Set

TCD_Lowest_Set_Bit is nothing more than a standard look-up table. The table is indexed
by values ranging from 1 to 255. The value at any position in the table
contains the lowest set bit for that value. This is used to determine the highest priority task
represented in the previously defined bit maps. For example, the lowest bit set for the value
of 7 is contained in index 7 of the TCD_Lowest_Set_Bit array. In the table below, the
value of 7 is shown to have bit 0 set, which is correct.

Execute TaskExecute TaskExecute TaskExecute Task

Nucleus PLUS maintains a pointer to the task to execute. This pointer is called
TCD_Execute_Task. Note that TCD_Execute_Task does not necessarily point to the
currently executing task. There are several points in the system where this is true. Two
common situations arise during task preemption and during task protection conflicts.

Priority 0-7 Priority 8-15 Priority 16 -23 Priority 248-255

TCD_Sub_Priority_Groups

Group 0 Group 1 Group 2 Group 31

. . .

. . .

. . .

. . .
TCD_Lowest_Set_Bit

0 1 2 3 4 5 6 7 255

0 10 0 0 0 012

not used

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 37

Highest PriorityHighest PriorityHighest PriorityHighest Priority

The Nucleus PLUS variable TCD_Highest_Priority contains the highest task priority
ready for execution. Note that this does not necessarily represent the priority of the currently
executing task. This is true if the currently executing task has preemption disabled. If no
tasks are executing, this variable is set to the maximum priority.

Created HISRs ListCreated HISRs ListCreated HISRs ListCreated HISRs List

TCD_Created_HISRs_List is the head pointer of the list of created High-Level Interrupt
Service Routines (HISR). If this pointer is NU_NULL, there are no HISRs currently
created.

Total HISRsTotal HISRsTotal HISRsTotal HISRs

The total number of currently created Nucleus PLUS HISRs is contained in the variable
TCD_Total_HISRs. The contents of this variable correspond to the number of HCBs on
the created list. Manipulation of this variable is also done under the
protection of TCD_HISR_Protect.

Active HISR HeadsActive HISR HeadsActive HISR HeadsActive HISR Heads

Nucleus PLUS keeps an array of active HISR list head pointers. This list is called
TCD_Active_HISR_Heads. There are three HISR priorities available. The HISR priority
is an index into this table. Priority/index 0 represents the highest priority and priority/index
2 represents the lowest priority.

HCB HCB HCB HCB

TCD_Created_HISRs_List

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

38

Active HISR TailsActive HISR TailsActive HISR TailsActive HISR Tails

Nucleus PLUS keeps an array of active HISR list tail pointers. There are three HISR
priorities available. The HISR priority is an index into this table. Priority/index 0 represents
the highest priority and priority/index 2 represents the lowest priority.

Execute HISRExecute HISRExecute HISRExecute HISR

TCD_Execute_HISR contains a pointer to the highest priority HISR to execute. If this
pointer is NU_NULL, no HISRs are currently activated. Note that the current thread pointer
is not always equal to this pointer.

Current ThreadCurrent ThreadCurrent ThreadCurrent Thread

The control block of the currently executing thread is stored in the variable
TCD_Current_Thread. Therefore, this variable points at either a TC_TCB or a TC_HCB
structure. Except for initialization, this variable is set and cleared in the target dependent
portion of this component.

TCD_Active_HISR_Heads

HCB HCB HCB

HCB HCB

HCB HCB HCB

Pri 0 Pri 0

Pri 1 Pri 1

Pri 2 Pri 2

TCD_Active_HISR_Tails

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 39

Registered LISRsRegistered LISRsRegistered LISRsRegistered LISRs

Nucleus PLUS maintains a list, called TCD_Registered_LISRs, that specifies whether or
not a LISR is registered for a given interrupt vector. Values in the list that are indexed by
non-zero vectors can be used as an index into the list of LISR pointers. The actual registered
LISR can be found by referencing the LISR pointer list at the specified index.

LISR PointersLISR PointersLISR PointersLISR Pointers

TCD_LISR_Pointers is a list of LISR pointers that indicate the LISR function to call
when the interrupt occurs. If the entry is NULL, there is no specified LISR function to call,
and that entry is available for use.

Interrupt CountInterrupt CountInterrupt CountInterrupt Count

The number of Interrupt Service Routines (ISRs) currently in progress is contained in the
variable TCD_Interrupt_Count. If the contents of this variable are zero, then no
interrupts are in progress. If the contents are greater than 1, nested interrupts are in progress.

Stack SStack SStack SStack Switchedwitchedwitchedwitched

TCD_Stack_Switched is a flag that indicates if the system stack was switched to after the
thread�s context was saved. Some ports do not use this variable.

LISR LISR LISR LISR LISR

LISR
Function

LISR
Function

LISR
Function NULL LISR

Function

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

40

System ProtectSystem ProtectSystem ProtectSystem Protect

Nucleus PLUS protects the integrity of the system structures from competing tasks
and/or HISRs. This is done by using an internal protection structure called
TCD_System_Protect. All system creation and deletion is done under the
protection of TCD_System_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for

the protection.

System StackSystem StackSystem StackSystem Stack

TCD_System_Stack contains the system stack base pointer. When the system is idle or in
interrupt processing, the system stack is in use. This variable is usually set up during target
dependent initialization.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 41

LISR ProtectLISR ProtectLISR ProtectLISR Protect

Nucleus PLUS protects the integrity of LISRs from competing threads and/or HISRs. This
is done by using an internal protection structure called TCD_LISR_Protect. All LISR
creation and deletion is done under the protection of TCD_LISR_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummarField SummarField SummarField Summaryyyy

Field Descripton
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting

for the protection.

HISR ProtectHISR ProtectHISR ProtectHISR Protect

Nucleus PLUS protects the integrity of HISRs from competing threads and/or HISRs. This
is done by using an internal protection structure called TCD_HISR_Protect. All HISR
creation and deletion is done under the protection of TCD_HISR_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for

the protection.

Interrupt LevelInterrupt LevelInterrupt LevelInterrupt Level

TCD_Interrupt_Level is a variable that contains the enabled interrupt posture of the
system. In ports, this variable is a Boolean.

Unhandled InterruptsUnhandled InterruptsUnhandled InterruptsUnhandled Interrupts

Nucleus PLUS maintains a variable that contains the last unhandled interrupt vector number
in system error conditions. This variable is TCD_Unhandled_Interrupts.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

42

Task Control BlockTask Control BlockTask Control BlockTask Control Block

The Task Control Block TC_TCB contains the task�s priority and other fields
necessary for processing task control requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE tc_created
UNSIGNED tc_id
CHAR tc_name[NU_MAX_NAME]
DATA_ELEMENT tc_status
DATA_ELEMENT tc_delayed_suspend
DATA_ELEMENT tc_priority
DATA_ELEMENT tc_preemption
UNSIGNED tc_scheduled
UNSIGNED tc_cur_time_slice
VOID *tc_stack_start
VOID *tc_stack_end
VOID *tc_stack_pointer
UNSIGNED tc_stack_size
UNSIGNED tc_stack_minimum
struct TC_PROTECT_STRUCT *tc_current_protect
VOID *tc_saved_stack_ptr
UNSIGNED tc_time_slice
struct TC_TCB_STRUCT *tc_ready_previous
struct TC_TCB_STRUCT *tc_ready_next
UNSIGNED tc_priority_group
TC_TCB_STRUCT **tc_priority_head
DATA_ELEMENT *tc_sub_priority_ptr
DATA_ELEMENT tc_sub_priority
DATA_ELEMENT tc_saved_status
DATA_ELEMENT tc_signal_active
DATA_ELEMENT tc_padding[PAD_3]
VOID (*tc_entry)(UNSIGNED, VOID *)
UNSIGNED tc_argc
VOID *tc_argv
VOID (*tc_cleanup)(VOID *)
VOID *tc_cleanup_info
struct TC_PROTECT_STRUCT *tc_suspend_protect
INT tc_timer_active
TM_TCB tm_timer_control
UNSIGNED tc_signals
UNSIGNED tc_enabled_signals
VOID (*tc_signal_handler)(UNSIGNED)
UNSIGNED tc_system_reserved_1
UNSIGNED tc_system_reserved_2
UNSIGNED tc_system_reserved_3
UNSIGNED tc_app_reserved_1

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 43

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_created This is the link node structure for tasks. It is linked

into the created tasks list, which is a doubly linked,
circular list.

tc_id This holds the internal task identification of
0x5441534B, which is an equivalent to ASCII TASK.

tc_name This is the user-specified, 8 character name for the
task.

tc_status This is the task�s current status.
tc_delayed_suspend A flag that indicates if task is suspended.
tc_priority The current priority of the task.
tc_preemption A flag that determines if preemption is enabled.
tc_scheduled This indicates the task�s scheduled count.
tc_cur_time_slice This is the value of the current time slice.
*tc_stack_start A pointer to the starting address for the task�s stack.
*tc_stack_end A pointer to the ending address for the task�s stack.
*tc_stack_pointer This is the task�s stack pointer.
tc_stack_size Stores the task�s stack size.
tc_stack_minimum The task�s minimum allowable stack size.
*tc_current_protect A pointer to the task�s current protection structure.
*tc_saved_stack_ptr The task�s previous stack pointer.
tc_time_slice The value for the task�s current time-slice.
*tc_ready_previous A pointer to the previously ready TCB.
*tc_ready_next A pointer to the TCB that is next on the ready list.
tc_priority_group The current mask of the priority group bit.
**tc_priority_head A pointer to the head of the priority list.
*tc_sub_prioirty_ptr A pointer to the priority sub-group.
tc_sub_priority The current mask of the priority sub-group bit.
tc_saved_status This is the previous task�s status.
tc_signal_active A flag indicating if the signal is active or not.
tc_padding This is used to align the task structure on an even

boundary. In some ports this field is not used.
(*tc_entry)(UNSIGNED,
VOID *)

This is the task entry function.

tc_argc An optional task argument.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

44

Field Description
*tc_argv An optional task argument.
(*tc_cleanup)(VOID *) This is the task clean-up routine.
*tc_cleanup_info This is a pointer to task clean-up information.
*tc_suspend_protect A pointer to the protection structure at the time of task

suspension.
tc_timer_active A flag that determines if the timer is active.
tc_timer_control The timer control block.
tc_signals Contains the current signals.
tc_enabled_signals Contains the enabled signals.
(*tc_signal_handler)
(UNSIGNED) This is the signal handling routine.
tc_system_reserved_1 This is a reserved word for use by the system.
tc_system_reserved_2 This is a reserved word for use by the system.
tc_system_reserved_3 This is a reserved word for use by the system.
tc_app_reserved_1 This is a reserved word for use by the application.

HISR Control BlockHISR Control BlockHISR Control BlockHISR Control Block

The HISR Control Block TC_HCB contains the HISR�s priority and other fields necessary
for processing task control requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE tc_created
UNSIGNED tc_id
CHAR tc_name[NU_MAX_NAME]
DATA_ELEMENT tc_not_used_1
DATA_ELEMENT tc_not_used_2
DATA_ELEMENT tc_priority
DATA_ELEMENT tc_not_used_3
UNSIGNED tc_scheduled
UNSIGNED tc_cur_time_slice
VOID *tc_stack_start
VOID *tc_stack_end
VOID *tc_stack_pointer
UNSIGNED tc_stack_size
UNSIGNED tc_stack_minimum
struct TC_PROTECT_STRUCT *tc_current_protect
struct TC_HCB_STRUCT *tc_active_next
UNSIGNED tc_activation_count
VOID (*tc_entry)(VOID)
UNSIGNED tc_system_reserved_1
UNSIGNED tc_system_reserved_2
UNSIGNED tc_system_reserved_3
UNSIGNED tc_app_reserved_1

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 45

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_created This is the link node structure for HISRs. It is

linked into the created HISRs list, which is a
doubly linked, circular list.

tc_id This holds the internal HISR identification of
0x48495352, which is an equivalent to ASCII
HISR.

tc_name This is the user-specified, 8 character name for
the HISR.

tc_not_used_1 This field is a placeholder and is not used.
tc_not_used_2 This field is a placeholder and is not used.
tc_priority This is the priority of the HISR.
tc_not_used_3 This field is a placeholder and is not used.
tc_scheduled This is the HISR scheduled count.
tc_cur_time_slice This is the value of the current time slice.
*tc_stack_start A pointer to the starting address for the HISR�s

stack.
*tc_stack_end A pointer to the ending address for the HISR�s

stack.
*tc_stack_pointer This is the HISR�s stack pointer.
tc_stack_size Stores the HISR�s stack size.
tc_stack_minimum The HISR�s minimum allowable stack size.
*tc_current_protect A pointer to the HISR�s current protection

structure.
*tc_active_next A pointer to the next activated HISR.
tc_activation_count The activation counter for the HISR.
(*tc_entry)(VOID) This is the HISR�s entry function.
tc_system_reserved_1 This is a reserved word for use by the system.
tc_system_reserved_2 This is a reserved word for use by the system.
tc_system_reserved_3 This is a reserved word for use by the system.
tc_app_reserved_1 This is a reserved word for use by the application.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

46

Protection BlockProtection BlockProtection BlockProtection Block

Nucleus PLUS protects the integrity of Nucleus PLUS data structures from competing tasks
and/or HISRs. This is done by using an internal protection structure called TC_Protect.
All Nucleus PLUS data structure creation and deletion, and any list access is done under the
protection of TC_Protect.

Field DeclaratiField DeclaratiField DeclaratiField Declarationsonsonsons

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Descripton
*tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting

for the protection.

Thread Control FunctionsThread Control FunctionsThread Control FunctionsThread Control Functions

The following sections provide a brief description of the functions in the Thread Control
Component (TC). Review of the actual source code is recommended for further
information.

TCC_Create_Task

This function creates a task and then places it on the list of created tasks. All the resources
necessary to create the task are supplied to this routine. If specified, the newly created task
is started. Otherwise, it is left in a suspended state.

STATUS TCC_Create_Task (NU_TASK *task_ptr, CHAR *name, VOID
 (*task_entry)(UNSIGNED, VOID *),
 UNSIGNED argc, VOID *argv, VOID
 *stack_address, UNSIGNED
 stack_size, OPTION
 priority,UNSIGNED time_slice,
 OPTION preempt, OPTION auto_start)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List TCT TCT_Control_To_System
[HIC_Make_History_Entry] TCT_Protect
TCC_Resume_Task TCT_Unprotect
TCT_Build_Task_Stack TMC_Init_Task_Timer
[TCT_Check_Stack]

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 47

TCC_Delete_Task

This function deletes a task and removes it from the list of created tasks. It is assumed by
this function that the task is in a finished or terminated state. Note that this function does not
free memory associated with the task�s control block or its stack. That is the responsibility of
the application.

STATUS TCC_Delete_Task(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TCC_Create_HISR

This function creates a High-Level Interrupt Service Routine (HISR) and then places it on
the list of created HISRs. All the resources necessary to create the HISR are supplied to this
routine. HISRs are always created in a dormant state.

STATUS TCC_Create_HISR (NU_HISR *hisr_ptr, CHAR *name, VOID
 (*hisr_entry)(VOID), OPTION priority,
 VOID *stack_address,UNSIGNED stack_size)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
TCT_Build_HISR_Stack
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

48

TCC_Delete_HISR

This function deletes a HISR and removes it from the list of created HISRs. It is assumed by
this function that the HISR is in a non-active state. Note that this function does not free
memory associated with the HISR�s control block or its stack. This is the responsibility of
the application.

STATUS TCC_Delete_HISR(NU_HISR *hisr_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TCC_Reset_Task

This function resets the specified task. Note that a task reset can only be performed on tasks
in a finished or terminated state. The task is left in an unconditional suspended state.

STATUS TCC_Reset_Task(NU_TASK *task_ptr, UNSIGNED argc,
 VOID *argv)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCT_Build_Task_Stack
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 49

TCC_Terminate_Task

This function terminates the specified task. If the task is already terminated, this function
does nothing. If the task to terminate is currently suspended, the specified cleanup routine is
also invoked to clean up suspension data structures.

STATUS TCC_Terminate_Task(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

Cleanup routine
[HIC_Make_History_Entry]
TCC_Suspend_Task
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect
TCT_Unprotect_Specific
TMC_Stop_Task_Timer

TCC_Resume_Task

This function resumes a previously suspended task. The task must currently be suspended
for the same reason indicated by this request. If the task resumed is of higher priority than
the calling task and the current task is preemptable, this function returns a value of
NU_TRUE. If no preemption is required, a NU_FALSE is returned.

STATUS TCC_Resume_Task(NU_TASK *task_ptr,
 OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Set_Current_Protect
TCT_Set_Execute_Task
TMC_Stop_Task_Timer

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

50

TCC_Resume_Service

This function provides a suitable interface to the actual service to resume a task.

STATUS TCC_Resume_Service(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Protect
TCT_Unprotect

TCC_Suspend_Task

This function suspends the specified task. If the specified task is the calling task, control is
transferred back to the system.

VOID TCC_Suspend_Task(NU_TASK *task_ptr, OPTION suspend_type,
 VOID (*cleanup) (VOID*),VOID*information,
 UNSIGNED timeout)

Functions CalledFunctions CalledFunctions CalledFunctions Called

HIC_Make_History_Entry
TCT_Control_To_System
TCT_Protect
TCT_Set_Execute_Task
TCT_Protect_Switch
TCT_Unprotect
TMC_Start_Task_Timer

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 51

TCC_Suspend_Service

This function provides a suitable interface to the actual service to suspend a task.

STATUS TCC_Suspend_Service(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Suspend_Task
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TCC_Task_Timeout

This function processes task suspension timeout conditions. Note that task sleep
requests are also considered a timeout condition.

VOID TCC_Task_Timeout(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

Caller’s cleanup function
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Protect
TCT_Set_Current_Protect
TCT_Unprotect
TCT_Unprotect_Specific

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

52

TCC_Task_Sleep

This function provides task sleep suspensions. Its primary purpose is to interface with the
actual task suspension function.

VOID TCC_Task_Sleep(UNSIGNED ticks)

FunctFunctFunctFunctions Calledions Calledions Calledions Called

[HIC_Make_History_Entry]
TCC_Suspend_Task
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TCC_Relinquish

This function moves the calling task to the end of other tasks at the same priority level. The
calling task does not execute again until all the other tasks of the same priority get a chance
to execute.

VOID TCC_Relinquish(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Protect
TCT_Set_Execute_Task
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 53

TCC_Time_Slice

This function moves the specified task to the end of the other tasks at the same priority level.
If the specified task is no longer ready, this request is ignored.

VOID TCC_Time_Slice(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Set_Execute_Task
TCT_Unprotect

TCC_Current_Task_Pointer

This function returns the pointer of the currently executing task. If the current thread is not a
task thread, a NU_NULL is returned.

NU_TASK *TCC_Current_Task_Pointer(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

54

TCC_Current_HISR_Pointer

This function returns the pointer of the currently executing HISR. If the current thread is not
a HISR thread, a NU_NULL is returned.

NU_HISR *TCC_Current_HISR_Pointer(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCC_Task_Shell

This function is a shell from which all application tasks are initially executed. The shell
causes the task to finish when control is returned from the application task. Also, the shell
passes argc and argv arguments to the task�s entry function.

VOID TCC_Task_Shell(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

Task Entry Function
TCC_Suspend_Task
TCT_Protect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 55

TCC_Signal_Shell

This function processes signals by calling the task-supplied signal handling function. When
signal handling is completed, the task is placed in the appropriate state.

VOID TCC_Signal_Shell(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

task’s signal handling routine
[TCT_Check_Stack]
TCT_Signal_Exit
TCT_Protect
TCT_Set_Execute_Task
TCT_Unprotect

TCC_Dispatch_LISR

This function dispatches the LISR associated with the specified interrupt vector. Note that
this function is called during the interrupt thread.

VOID TCC_Dispatch_LISR(INT vector)

FuFuFuFunctions Callednctions Callednctions Callednctions Called

application LISR
ERC_System_Error

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

56

TCC_Register_LISR

This function registers the supplied LISR with the supplied vector number. If the supplied
LISR is NU_NULL, the supplied vector is de-registered. The previously registered LISR is
returned to the caller, along with the completion status.

STATUS TCC_Register_LISR(INT vector, VOID(*new_lisr)(INT),
 VOID (**old_lisr)(INT))

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
INT_Retrieve_Shell
INT_Setup_Vector
INT_Vectors_Loaded
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TCCE_Create_Task

This function performs error checking on the parameters supplied to the create task function.

STATUS TCCE_Create_Task(NU_TASK *task_ptr, CHAR *name, VOID
 (*task_entry)(UNSIGNED,VOID*),
 UNSIGNED argc, VOID *argv, VOID
 *stack_address, UNSIGNED stack_size,
 OPTION priority, UNSIGNED time_slice,
 OPTION preempt, OPTION auto_start)

FunctioFunctioFunctioFunctions Calledns Calledns Calledns Called

TCC_Create_Task

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 57

TCCE_Create_HISR

This function performs error checking on the parameters supplied to the create HISR
function.

STATUS TCCE_Create_HISR(NU_HISR *hisr_ptr, CHAR *name,
 VOID (*hisr_entry)(VOID), OPTION priority,
 VOID *stack_address, UNSIGNED stack_size)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Create_HISR

TCCE_Delete_HISR

This function performs error checking on the parameters supplied to the delete HISR
function.

STATUS TCCE_Delete_HISR (NU_HISR *hisr_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Delete_HISR

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

58

TCCE_Delete_Task

This function performs error checking on the parameters supplied to the delete task function.

STATUS TCCE_Delete_Task(NU_TASK *task_ptr)

Functions CaFunctions CaFunctions CaFunctions Calledlledlledlled

TCC_Delete_Task

TCCE_Reset_Task

This function performs error checking on the parameters supplied to the reset task function.

STATUS TCCE_Reset_Task(NU_TASK* task_ptr,UNSIGNED argc,
 VOID *argv)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Reset_Task

TCCE_Terminate_Task

This function performs error checking on the parameters supplied to the terminate task
function.

STATUS TCCE_Terminate_Task(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Terminate_Task

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 59

TCCE_Resume_Service

This function performs error checking on the parameters supplied to the resume task
function.

STATUS TCCE_Resume_Service(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCCE_Validate_Resume
TCC_Resume_Service

TCCE_Suspend_Service

This function performs error checking on the suspend service.

STATUS TCCE_Suspend_Service(NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Suspend_Service

TCCE_Relinquish

This function performs error checking for the relinquish function. If the current thread is not
a task, this request is ignored.

VOID TCCE_Relinquish(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Relinquish

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

60

TCCE_Task_Sleep

This function performs error checking for the task sleep function. If the current thread is not
a task, this request is ignored.

VOID TCCE_Task_Sleep(UNSIGNED ticks)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Task_Sleep

TCCE_Suspend_Error

This function checks for a suspend request error. Suspension requests are only allowed from
task threads. A suspend request from any other thread is an error.

INT TCCE_Suspend_Error(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 None

TCCE_Activate_HISR

This function performs error checking on the parameters supplied to the activate HISR
function.

STATUS TCCE_Activate_HISR(NU_HISR *hisr_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Activate_HISR

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 61

TCCE_Validate_Resume

This function validates the resume service and resume driver calls with scheduling
protection around the examination of the task status.

STATUS TCCE_Validate_Resume(OPTION resume_type,
 NU_TASK *task_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 TCT_Set_Current_Protect
 TCT_System_Protect
 TCT_System_Unprotect
 TCT_Unprotect

TCF_Established_Tasks

Returns the current number of established tasks. Tasks previously deleted are no longer
considered established.

UNSIGNED TCF_Established_Tasks(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

TCF_Established_HISRs

Returns the current number of established HISRs. HISRs previously deleted are no longer
considered established.

UNSIGNED TCF_Established_HISRs(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

62

TCF_Task_Pointers

Builds a list of task pointers, starting at the specified location. The number of task pointers
placed in the list is equivalent to the total number of tasks or the maximum number of
pointers specified in the call.

UNSIGNED TCF_Task_Pointers(NU_TASK **pointer_list,
 UNSIGNED maximum_pointers)

FFFFunctions Calledunctions Calledunctions Calledunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

TCF_HISR_Pointers

Builds a list of HISR pointers, starting at the specified location. The number of HISR
pointers placed in the list is equivalent to the total number of HISRs or the maximum
number of pointers specified in the call.

UNSIGNED TCF_HISR_Pointers(NU_HISR **pointer_list,
 UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 63

TCF_Task_Information

Returns information about the specified task. However, if the supplied task pointer is invalid,
the function simply returns an error status.

STATUS TCF_Task_Information(NU_TASK *task_ptr, CHAR *name,
 DATA_ELEMENT *status, UNSIGNED
 *scheduled_count, DATA_ELEMENT
 *priority, OPTION *preempt,
 UNSIGNED *time_slice, VOID
 **stack_base, UNSIGNED
 *stack_size, UNSIGNED
 *minimum_stack)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

TCF_HISR_Information

Returns information about the specified HISR. However, if the supplied HISR pointer is
invalid, the function simply returns an error status.

STATUS TCF_HISR_Information(NU_HISR *hisr_ptr, CHAR *name,
 UNSIGNED *scheduled_count,
 DATA_ELEMENT *priority, VOID
 **stack_base, UNSIGNED
 *stack_size, UNSIGNED
 minimum_stack)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

64

TCI_Initialize

This function initializes the data structures that control the operation of the TC
component. The system is initialized as idle.

VOID TCI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCS_Change_Priority

This function changes the priority of the specified task. The priority of a suspended or a
ready task can be changed. If the new priority requires a context switch, control is
transferred back to the system.

OPTION TCS_Change_Priority(NU_TASK *task_ptr, OPTION
 new_priority)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Protect
TCT_Set_Execute_Task
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 65

TCS_Change_Preemption

This function changes the preemption posture of the calling task. Preemption for a task may
be enabled or disabled. If it is disabled, the task runs until it suspends or
relinquishes. If a preemption is pending, a call to this function to enable preemption causes a
context switch.

OPTION TCS_Change_Preemption(OPTION preempt)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Protect
TCT_Set_Execute_Task
TCT_Unprotect

TCS_Change_Time_Slice

This function changes the time slice of the specified task. A time slice value of 0 disables
time slicing.

UNSIGNED TCS_Change_Time_Slice(NU_TASK *task_ptr,
 UNSIGNED time_slice)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

66

TCS_Control_Signals

This function enables the specified signals and returns the previous enable signal value back
to the caller. If a newly enabled signal is present and a signal handler is registered, signal
handling is started.

UNSIGNED TCS_Control_Signals(UNSIGNED enable_signal_mask)

FunctiFunctiFunctiFunctions Calledons Calledons Calledons Called

[HIC_Make_History_Entry]
TCC_Signal_Shell
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TCS_Receive_Signals

This function returns the current signals back to the caller. Note that the signals are cleared
automatically.

UNSIGNED TCS_Receive_Signals(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]

 TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 67

TCS_Register_Signal_Handler

This function registers a signal handler for the calling task. Note that if an enabled signal is
present and this is the first registered signal handler call, the signal is processed immediately.

STATUS TCS_Register_Signal_Handler(VOID (*signal_handler)
 (UNSIGNED))

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Signal_Shell
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TCS_Send_Signals

This function sends the specified task the specified signals. If enabled, the specified task is
setup in order to process the signals.

STATUS TCS_Send_Signals(NU_TASK *task_ptr, UNSIGNED signals)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Signal_Shell
TCT_Build_Signal_Frame
[TCT_Check_Stack]

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

68

TCSE_Change_Priority

This function performs error checking for the change priority service. If an error is detected,
this service is ignored and the requested priority is returned.

OPTION TCSE_Change_Priority(NU_TASK *task_ptr,
 OPTION new_priority)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCS_Change_Priority

TCSE_Change_Preemption

This function performs error checking on the change preemption service. If the current
thread is not a task thread, this request is ignored.

OPTION TCSE_Change_Preemption(OPTION preempt)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCS_Change_Preemption

TCSE_Change_Time_Slice

This function performs error checking on the change time slice service. If the specified task
pointer is invalid, this request is ignored.

UNSIGNED TCSE_Change_Time_Slice(NU_TASK *task_ptr,
 UNSIGNED time_slice)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCS_Change_Time_Slice

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 69

TCSE_Control_Signals

This function checks to see if the call is being made from a non-task thread. If so, the
request is simply ignored.

UNSIGNED TCSE_Control_Signals(UNSIGNED enable_signal_mask)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCS_Control_Signals

TCSE_Receive_Signals

This function determines whether or not the call is being made from a task thread of
execution. If not, the call is ignored.

UNSIGNED TCSE_Receive_Signals(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 TCS_Receive_Signals

TCSE_Register_Signal_Handler

This function determines whether or not the caller is a task. If the caller is not a task and/or if
the supplied signal handling function pointer is NULL, an appropriate error status is
returned.

STATUS TCSE_Register_Signal_Handler(VOID (*signal_handler)
 (UNSIGNED))

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCS_Register_Signal_Handler

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

70

TCSE_Send_Signals

This function checks for an invalid task. If an invalid task is selected an error is returned.

STATUS TCSE_Send_Signals(NU_TASK *task_ptr, UNSIGNED signals)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCS_Send_Signals

TCT_Control_Interrupts

This is an assembly language function that enables and disables interrupts as specified by the
caller. Interrupts disabled by this call are left disabled until another call is made to enable
them.

INT TCT_Control_Interrupts(new_level)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Local_Control_Interrupts

This is an assembly language function, which enables and disables interrupts as
specified by the caller.

INT TCT_Local_Control_Interrupts(new_level)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 71

TCT_Restore_Interrupts

This is an assembly language function that restores interrupts to that specified in the global
TCD_Interrupt_Level variable.

VOID TCT_Restore_Interrupts(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Build_Task_Stack

This is an assembly language function, which builds an initial stack frame for a task. The
initial stack contains information concerning initial values of registers and the task�s point of
entry. Furthermore, the initial stack frame is in the same form as an interrupt stack frame.

VOID TCT_Build_Task_Stack(TC_TCB *task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Build_HISR_Stack

This is an assembly language function. It builds an HISR stack frame that allows quick
scheduling of the HISR.

VOID TCT_Build_HISR_Stack(TC_HCB *hisr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

72

TCT_Build_Signal_Frame

This is an assembly language function that builds a frame on top of the task�s stack. This
causes the task�s signal handler to execute the next time the task is executed.

VOID TCT_Build_Signal_Frame(TC_TCB *task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Check_Stack

This assembly language function checks the current stack for overflow conditions.
Additionally, this function keeps track of the minimum amount of stack space for the calling
thread and returns the current available stack space.

UNSIGNED TCT_Check_Stack(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

ERC_System_Error

TCT_Schedule

This assembly language function waits for a thread to become ready. Once a thread is ready,
this function initiates a transfer of control to that thread.

VOID TCT_Schedule(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Control_To_Thread

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 73

TCT_Control_To_Thread

This is an assembly language function. It transfers control to the specified thread. Each
time control is transferred to a thread, its scheduled counter is incremented. Additionally,
time slicing for task threads is enabled in this routine. The TCD_Current_Thread pointer
is set up by this function.

VOID TCT_Control_To_Thread(TC_TCB *thread)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Control_To_System

This is an assembly language function that returns control from a thread to the system. Note
that this service is called in a solicited manner, i.e., it is not called from an interrupt thread.
Registers required by the compiler to be preserved across function boundaries are saved by
this routine. Note that this is usually a subset of the total number of available registers.

VOID TCT_Control_To_System(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Schedule

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

74

TCT_Signal_Exit

This assembly language function exits from a signal handler. The primary purpose of this
function is to clear the scheduler protection and switch the stack pointer back to the normal
task�s stack pointer.

VOID TCT_Control_To_System(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Schedule

TCT_Current_Thread

This is an assembly language function, which returns the current thread pointer.

VOID *TCT_Current_Thread(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Set_Execute_Task

This assembly language function sets the current task to execute the variable under
protection, which is against interrupts.

VOID TCT_Set_Execute_Task(TC_TCB *task)

FunctFunctFunctFunctions Calledions Calledions Calledions Called

None

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 75

TCT_Protect

This assembly language function protects against multiple thread access. If another thread
(TASK or HISR) owns the requested protection structure, then that thread will be scheduled
to run until it releases the protection structure. At that time, the thread is suspended, and
control is returned to the thread doing the TCT_Protect call. This prevents lower priority
tasks from blocking higher priority threads trying to obtain a protection structure.

VOID TCT_Protect(TC_PROTECT *protect)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Unprotect

This is an assembly language function that releases protection of the currently active thread.
If the caller is not an active thread, then this request is ignored.

VOID TCT_Unprotect(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

76

TCT_Unprotect_Specific

This assembly language function releases a specific protection structure.

VOID TCT_Unprotect_Specific(TC_PROTECT *protect)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_Set_Current_Protect

This is an assembly language function, which sets the current protection field of the current
thread�s control block to the specified protection pointer.

VOID TCT_Set_Current_Protect(TC_PROTECT *protect)

Functions Functions Functions Functions CalledCalledCalledCalled

None

TCT_Protect_Switch

This is an assembly language function that waits until a specific task no longer has any
protection associated with it. This is necessary since tasks cannot be suspended or
terminated unless they have released all of their protection.

VOID TCT_Protect_Switch(VOID *thread)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 77

TCT_Schedule_Protected

This assembly language function saves the minimal context of a thread. Then it directly
schedules another thread that has protection over the thread that called this routine.

VOID TCT_Schedule_Protected(VOID *thread)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Control_To_Thread

TCT_Interrupt_Context_Save

This is an assembly language function that saves the interrupted thread�s context. Nested
interrupts are also supported. If a task or HISR thread was interrupted, the stack pointer is
switched to the system stack after the context is saved.

VOID TCT_Interrupt_Context_Save(vector)

Functions CalFunctions CalFunctions CalFunctions Calledledledled

None

TCT_Interrupt_Context_Restore

This assembly language function restores the interrupt context if a nested interrupt condition
is present. Otherwise, this routine transfers control to the scheduling
function.

VOID TCT_Interrupt_Context_Restore(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Schedule

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

78

TCT_Activate_HISR

This is an assembly language function, which activates the specified HISR. If the HISR is
already activated, the HISR�s activation count is simply incremented. Otherwise, the HISR
is placed on the appropriate HISR priority list in preparation for execution.

STATUS TCT_Activate_HISR(TC_HCB *hisr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TCT_HISR_Shell

This is an assembly language function that is the execution shell of each and every HISR. If
the HISR has completed its processing, this shell routine exits back to the system.
Otherwise, it sequentially calls the HISR routine until the activation count goes to zero.

VOID TCT_HISR_Shell(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

hisr -> tc_entry

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 79

TCT_Check_For_Preemption

This is an assembly language function that checks to see if some other interrupt
condition occurred while a minimal ISR was in process. If so, a full context save and restore
is performed in order to process the preemption. Otherwise, control is
transferred back to the point of interrupt.

VOID TCT_Check_For_Preemption(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Interrupt_Context_Save
TCT_Interrupt_Context_Restore

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

80

Timer ComponenTimer ComponenTimer ComponenTimer Component (TM)t (TM)t (TM)t (TM)

The Timer Component (TM) is responsible for processing all Nucleus PLUS timer facilities.
The basic unit of time for a Nucleus PLUS timer is a tick, which corresponds to a single
hardware timer interrupt. Nucleus PLUS timers can be applied at the application level to
execute a particular routine at timer expiration. Timers can also apply to tasks and are used
to provide task sleeping and service call suspension timeouts. Please see Chapter 3 of the
Nucleus PLUS Reference Manual for more detailed information about timers.

Timer FilesTimer FilesTimer FilesTimer Files

The Timer Component (TM) consists of nine files. Each source file of the Timer
Component is defined below.

File Description
TM_DEFS.H This file contains constants and data structure definitions

specific to the TM.
TM_EXTR.H All external interfaces to the TM are defined in this file.
TMD.C Global data structures for the TM are defined in this file.
TMI.C This file contains the initialization function for the TM.
TMF.C This file contains the information gathering functions for the

TM.
TMC.C This file contains all of the core functions of the TM.

Functions that handle basic start-timer and stop-timer services
are defined in this file.

TMS.C This file contains supplemental functions of the TM.
Functions contained in this file are typically used less
frequently than the core functions.

TMSE.C This file contains the error checking function interfaces for the
supplemental functions defined in TMS.C.

TMT.[S,ASM,SRC] This file contains all of the target dependent functions of the
TM.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 81

Timer Data StructuresTimer Data StructuresTimer Data StructuresTimer Data Structures

Created Timers ListCreated Timers ListCreated Timers ListCreated Timers List

Nucleus PLUS application timers may be created and deleted dynamically. The Timer
Control Block (APP_TCB) for each created timer is kept on a doubly linked, circular list.
Newly created timers are placed at the end of the list, while deleted timers are completely
removed from the list. The head pointer of this list is TMD_Created_Timers_List. The
Created Timers List is used exclusively for application timers.

Created Timer List ProtectionCreated Timer List ProtectionCreated Timer List ProtectionCreated Timer List Protection

Nucleus PLUS protects the integrity of the Created Timers List from competing tasks and/or
HISRs. This is done by using an internal protection structure called
TMD_Created_List_Protect. All timer creation and deletion is done under the
protection of TMD_Created_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are

waiting for the protection.

APP_TCB APP_TCB APP_TCB APP_TCB

TMD_Created_Timers_List

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

82

Total TimersTotal TimersTotal TimersTotal Timers

The total number of currently created Nucleus PLUS timers is contained in the variable
TMD_Total_Timers. The contents of this variable correspond to the number of TCBs on
the created list. Manipulation of this variable is also done under the
protection of TMD_Created_List_Protect.

Active Timers ListActive Timers ListActive Timers ListActive Timers List

Nucleus PLUS active timers are maintained on a doubly linked, circular list.
TMD_Active_Timers_List is the head pointer to this list. If this pointer is NULL, there
are no timers active. The timer list supports both application timers and task timers. Task
timer structures reside in the task�s TCB. The timer list is maintained in order of expiration
time. The remaining time is in delta expirations, not absolute time. This is done in order to
avoid adjusting the entire list on every timer interrupt. A timer with a remaining time of zero
is considered to be expired.

TM_APP_TCB 1
or

TM_TCB 1

TM_APP_TCB 2
or

TM_TCB 2

TM_APP_TCB 3
or

TM_TCB 3

TM_APP_TCB n
or

TM_TCB n

TMD_Active_Timers_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 83

Active ListActive ListActive ListActive List Busy Busy Busy Busy

Nucleus PLUS protects the integrity of the Active Timers List from competing tasks and/or
HISRs. This is done by using a protection flag called TMD_Active_List_Busy. All
active timer list additions and deletions are done under the protection of
TMD_Active_List_Busy.

System ClockSystem ClockSystem ClockSystem Clock

Nucleus PLUS maintains a continually incrementing system clock called
TMD_System_Clock. The clock is incremented by one each timer interrupt.

Timer StartTimer StartTimer StartTimer Start

Nucleus PLUS stores the value of the last timer request in the variable TMD_Timer_Start.

TimerTimerTimerTimer

The variable TMD_Timer is a countdown timer that is used to represent the smallest active
timer value in the system. When a timer expires, this variable has a value of zero.

Timer StateTimer StateTimer StateTimer State

TMD_Timer_State indicates the state of the timer variable. If the state is active, the timer
counter is decremented. If the state is expired, the timer HISR and timer task are initiated to
process the expiration. If the state indicates that the timer is not active, the timer counter is
ignored.

TTTTime Sliceime Sliceime Sliceime Slice

Nucleus PLUS uses the variable TMD_Time_Slice as a countdown value for the currently
executing task�s time slice. Time slice processing is started when the value of
TMD_Time_Slice becomes zero.

Time Slice TaskTime Slice TaskTime Slice TaskTime Slice Task

TMD_Time_Slice_Task is a pointer to the TCB of the task to time-slice. This pointer is
setup in the timer interrupt when a time-slice timer has expired.

Time Slice StateTime Slice StateTime Slice StateTime Slice State

Nucleus PLUS indicates the state of the time slice variable using TMD_Time_Slice_State.
If the state is active, the time slice counter is decremented. If the state is expired, the timer
HISR is initiated to process the
expiration. If the state indicates that the time slice is not-active, the time slice counter is
ignored.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

84

HISRHISRHISRHISR

TMD_HISR is the timer HISR�s control block.

HISR Stack PointerHISR Stack PointerHISR Stack PointerHISR Stack Pointer

TMD_HISR_Stack_Ptr points to the memory area reserved for the timer HISR. Note that
this is setup in INT_Initialize.

HISR Stack SizeHISR Stack SizeHISR Stack SizeHISR Stack Size

Nucleus PLUS determines the size of the allocated timer HISR stack with the variable
TMD_HISR_Stack_Size. Note that this is setup in INT_Initialize.

HISR PriorityHISR PriorityHISR PriorityHISR Priority

TMD_HISR_Priority indicates the priority of the timer HISR. Priorities range from 0 to
2, where priority 0 is the highest. Note that this is also initialized in INT_Initialize.

Timer Control BTimer Control BTimer Control BTimer Control Block lock lock lock

The Timer Control Block TM_TCB contains the remaining time and other fields necessary
for processing timer requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

INT tm_timer_type
UNSIGNED tm_remaining_time
VOID *tm_information
struct TM_TCB_STRUCT *tm_next_timer
struct TM_TCB_STRUCT *tm_previous_timer

Field SummaryField SummaryField SummaryField Summary

Field Description
tm_timer_type Indicates if the timer is for an application or a task.
tm_remaining_time This stores the amount of time remaining after

expiration of the previous timer occurs. The true
expiration is the sum of all previous timer�s
remaining time on the active list

*tm_information A pointer to general information about the timer.
*tm_next_timer A pointer to the next timer in the list.
*tm_previous_timer A pointer to the previous timer in the list.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 85

Application�s Timer Control BlockApplication�s Timer Control BlockApplication�s Timer Control BlockApplication�s Timer Control Block

The Application�s Timer Control Block TM_APP_TCB contains a pointer to the timer
expiration routine and other fields necessary for processing application timer requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE tm_created
UNSIGNED tm_id
CHAR tm_name[NU_MAX_NAME]
VOID (*tm_expiration_routine)(UNSIGNED)
UNSIGNED tm_expiration_id
INT tm_enabled
UNSIGNED tm_expirations
UNSIGNED tm_initial_time
UNSIGNED tm_reschedule_time
TM_TCB tm_actual_timer

Field SummarField SummarField SummarField Summaryyyy

Field Descripton
tm_created This is the link node structure for timers. It is linked

into the created timers list, which is a doubly linked,
circular list.

tm_id This holds the internal timer identification of
0x54494D45, which is an equivalent to ASCII
TIME.

tm_name This is the user-specified, 8 character name for the
timer.

*tm_expiration_routine A pointer to the timer expiration function.
tm_expiration_id This is the name of the expiration.
tm_enabled A flag that determines if the timer is enabled.
tm_expirations This stores the number of timer expirations.
tm_initial_time Stores the initial starting time for the timer.
tm_reschedule_time Stores the reschedule time for the timer.
tm_actual_timer The actual timer TCB.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

86

Timer FunctionsTimer FunctionsTimer FunctionsTimer Functions

The following sections provide a brief description of the functions in the Timer
Component (TM). Review of the actual source code is recommended for further
information.

TMC_Init_Task_Timer

This function is responsible for initializing the supplied task timer.

VOID TMC_Init_Task_Timer(TM_TCB *timer, VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TMC_Start_Task_Timer

This function is responsible for starting a task timer. Note that there are some special
protection considerations since this function is called from the task control component.

VOID TMC_Start_Task_Timer(TM_TCB *timer, UNSIGNED time)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMC_Start_Timer

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 87

TMC_Stop_Task_Timer

This function is responsible for stopping a task timer. Note that there are some special
protection considerations since this function is called from the task control component.

VOID TMC_Stop_Task_Timer(TM_TCB *timer)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMC_Stop_Timer

TMC_Start_Timer

This function is responsible for starting both application and task timers.

VOID TMC_Start_Timer(TM_TCB *timer, UNSIGNED time)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMT_Read_Timer
TMT_Adjust_Timer
TMT_Enable_Timer

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

88

TMC_Stop_Timer

This function is responsible for stopping both application and task timers.

VOID TMC_Stop_Timer(TM_TCB *timer)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMT_Disable_Timer

TMC_Timer_HISR

This function is responsible for High-Level interrupt processing of a timer expiration. If an
application timer has expired, the timer expiration function is called. Otherwise, if the time-
slice timer has expired, time-slice processing is invoked.

VOID TMC_Timer_HISR(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Time_Slice
TMC_Timer_Expiration
TMT_Retrieve_TS_Task

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 89

TMC_Timer_Expiration

This function is responsible for processing all task timer expirations. This includes
application timers and basic task timers that are used for task sleeping and timeouts.

VOID TMC_Timer_Expiration(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

expiration_function
TCC_Task_Timeout
TCT_System_Protect
TCT_Unprotect

TMF_Established_Timers

This function returns the current number of established timers. Timers previously deleted
are no longer considered established.

UNSIGNED TMF_Established_Timers(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

TMF_Get_Remaining_Time

This function retrieves the remaining time before the expiration of the specified timer.

UNSIGNED TMF_Get_Remaining_Time(NU_TIMER *timer,
 UNSIGNED *remaining_time)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

90

TMF_Timer_Pointers

Builds a list of timer pointers, starting at the specified location. The number of timer
pointers placed in the list is equivalent to the total number of timers or the maximum number
of pointers specified in the call.

UNSIGNED TMF_Timer_Pointers(NU_TIMER **pointer_list,
 UNSIGNED maximum_pointers)

FuncFuncFuncFunctions Calledtions Calledtions Calledtions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

TMF_Timer_Information

This function returns information about the specified timer. However, if the supplied timer
pointer is invalid, the function simply returns an error status.

STATUS TMF_Timer_Information (NU_TIMER *timer_ptr, CHAR *name,
 OPTION *enable, UNSIGNE*expirations,
 UNSIGNED *id, UNSIGNED*initial_time,
 UNSIGNED *reschedule_time)

FunctFunctFunctFunctions Calledions Calledions Calledions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 91

TMI_Initialize

This function initializes the data structures that control the operation of the Timer
Management component. There are no application timers created initially.

VOID TMI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

ERC_System_Error
TCC_Create_HISR
TCCE_Create_HISR

TMS_Create_Timer

This function creates an application timer and places it on the list of created timers. The
timer is activated if designated by the enable parameter.

STATUS TMS_Create_Timer(NU_TIMER *timer_ptr, CHAR *name, VOID
 (*expiration_routine)
 (UNSIGNED), UNSIGNED id, UNSIGNED
 initial_time, UNSIGNED
 reschedule_time, OPTION enable)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect
TMS_Control_Timer

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

92

TMS_Delete_Timer

This function deletes an application timer and removes it from the list of created timers.

STATUS TMS_Delete_Timer(NU_TIMER *timer_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_System_Protect
TCT_Unprotect

TMS_Reset_Timer

This function resets the specified application timer. Note that the timer must be in a disabled
state prior to this call. The timer is activated after it is reset if the enable parameter specifies
automatic activation.

STATUS TMS_Reset_Timer(NU_TIMER *timer_ptr, VOID
 (*expiration_routine)(UNSIGNED),UNSIGNED
 initial_time,UNSIGNED
 reschedule_time, OPTION enable)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect
TMS_Control_Timer

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 93

TMS_Control_Timer

This function either enables or disables the specified timer. If the timer is already in the
desired state, simply leave it alone.

STATUS TMS_Control_Timer(NU_TIMER *app_timer, OPTION enable)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect
TMC_Start_Timer
TMC_Stop_Timer

TMSE_Create_Timer

This function performs error checking on the parameters supplied to the create timer
function.

STATUS TMSE_Create_Timer (NU_TIMER *timer_ptr, CHAR *name,
 VOID (*expiration_routine)
 (UNSIGNED), UNSIGNED id, UNSIGNED
 initial_time, UNSIGNED
 reschedule_time, OPTION enable)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMS_Create_Timer

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

94

TMSE_Delete_Timer

This function performs error checking on the parameters supplied to the delete timer
function.

STATUS TMSE_Delete_Timer(NU_TIMER *timer_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMS_Delete_Timer

TMSE_Reset_Timer

This function performs error checking on the parameters supplied to the reset timer function.

STATUS TMSE_Reset_Timer (NU_TIMER *timer_ptr, VOID
 (*expiration_routine)(UNSIGNED),
 UNSIGNED initial_time, UNSIGNED
 reschedule_time, OPTION enable)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMS_Reset_Timer

TMSE_Control_Timer

This function performs error checking on the parameters supplied to the control timer
function.

STATUS TMSE_Control_Timer(NU_TIMER *timer_ptr, OPTION enable)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TMS_Control_Timer

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 95

TMT_Set_Clock

This assembly language function sets the system clock to the specified value.

VOID TMT_Set_Clock(UNSIGNED new_value)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TMT_Retrieve_Clock

This is an assembly language function that returns the current value of the system clock.

UNSIGNED TMT_Retrieve_Clock(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

96

TMT_Read_Timer

This is an assembly language function, which returns the current value of the countdown
timer.

UNSIGNED TMT_Read_Timer(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TMT_Enable_Timer

This is an assembly language function that enables the countdown timer with the
specified value.

VOID TMT_Enable_Timer(UNSIGNED time)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TMT_Adjust_Timer

This is an assembly language function that adjusts the countdown timer with the
specified value - if the new value is less than the current.

VOID TMT_Adjust_Timer(UNSIGNED time)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 97

TMT_Disable_Timer

This assembly language function disables the countdown timer.

VOID TMT_Disable_Timer(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TMT_Retrieve_TS_Task

This is an assembly language function that returns the time-sliced task pointer.

NU_TASK *TMT_Retrieve_TS_Task(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

TMT_Timer_Interrupt

This assembly language function processes the actual hardware interrupt. Processing
includes updating the system clock and the countdown timer and the time-slice timer. If one
or both of the timers expire, the timer HISR is activated.

VOID TMT_Timer_Interrupt(void)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Activate_HISR
TCT_Interrupt_Context_Save
TCT_Interrupt_Context_Restore

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

98

Mailbox Component (MB)Mailbox Component (MB)Mailbox Component (MB)Mailbox Component (MB)

The Mailbox Component (MB) is responsible for processing all Nucleus PLUS mailbox
facilities. A Nucleus PLUS mailbox is a low overhead mechanism for
inter-task communication. Each mailbox is capable of holding one message. A mailbox
message consists of four 32-bit words. Tasks may suspend while waiting for a message
from an empty mailbox. Conversely, tasks may suspend while trying to send to a mailbox
that already contains a message. Mailboxes are dynamically created and deleted by the user.
Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information
about mailboxes.

Mailbox FilesMailbox FilesMailbox FilesMailbox Files

The Mailbox Component (MB) consists of nine files. Each source file of the Mailbox
Component is defined below.

File Description
MB_DEFS.H This file contains constants and data structure definitions specific to

the MB.
MB_EXTR.H All external interfaces to the MB are defined in this file.
MBD.C Global data structures for the MB are defined in this file.
MBI.C This file contains the initialization function for the MB.
MBF.C This file contains the information gathering functions for the MB.
MBC.C This file contains all of the core functions of the MB. Functions that

handle basic send-to-mailbox and receive-from-mailbox services are
defined in this file.

MBS.C This file contains supplemental functions of the MB. Functions
contained in this file are typically used less frequently than the core
functions

MBCE.C This file contains the error checking function interfaces for the core
functions defined in MBC.C.

MBSE.C This file contains the error checking function interfaces for the
supplemental functions defined in MBS.C.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 99

Mailbox Data StructuresMailbox Data StructuresMailbox Data StructuresMailbox Data Structures

Created Mailbox ListCreated Mailbox ListCreated Mailbox ListCreated Mailbox List

Nucleus PLUS mailboxes may be created and deleted dynamically. The Mailbox Control
Block (MCB) for each created mailbox is kept on a doubly linked, circular list. Newly
created mailboxes are placed at the end of the list, while deleted
mailboxes are completely removed from the list. The head pointer of this list is
MBD_Created_Mailboxes_List.

Created Mailbox List ProtectCreated Mailbox List ProtectCreated Mailbox List ProtectCreated Mailbox List Protectionionionion

Nucleus PLUS protects the integrity of the Created Mailboxes List from competing tasks
and/or HISRs. This is done by using an internal protection structure called
MBD_List_Protect. All mailbox creation and deletion is done under the
protection of MBD_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for

the protection.

Total MailboxesTotal MailboxesTotal MailboxesTotal Mailboxes

The total number of currently created Nucleus PLUS mailboxes is contained in the variable
MBD_Total_Mailboxes. The content of this variable corresponds to the number of MCBs
on the created list. Manipulation of this variable is also done under the protection of
MBD_List_Protect.

MCB MCB MCB MCB

MBD_Created_Mailboxes_List

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

100

Mailbox Control BlockMailbox Control BlockMailbox Control BlockMailbox Control Block

The Mailbox Control Block MB_MCB contains the mailbox message area (4 32-bit unsigned
words) and other fields necessary for processing mailbox requests.

FielFielFielField Declarationsd Declarationsd Declarationsd Declarations

CS_NODE mb_created
UNSIGNED mb_id
CHAR mb_name[NU_MAX_NAME]
DATA_ELEMENT mb_message_present
DATA_ELEMENT mb_fifo_suspend
DATA_ELEMENT mb_padding[PAD_2]
UNSIGNED mb_tasks_waiting
UNSIGNED mb_message_area[MB_MESSAGE_SIZE]
struct MB_SUSPEND_STRUCT *mb_suspension_list

Field SummaryField SummaryField SummaryField Summary

Field Description
mb_created This is the link node structure for mailboxes. It is linked into the

created mailbox list, which is a doubly linked, circular list.
mb_id This holds the internal mailbox identification of 0x4D424F58,

which is an equivalent to ASCII MBOX.
mb_name This is the user-specified, 8 character name for the mailbox.
mb_message_present A flag that indicates if a message is present in the mailbox.
mb_fifo_suspend A flag that determines whether tasks suspend in FIFO or priority

order.
mb_padding This is used to align the mailbox structure on an even boundary. In

some ports this field is not used.
mb_tasks_waiting Indicates the number of tasks that are currently suspended on the

mailbox.
mb_message_area The storage area for the message.
*mb_suspension_list The head of the mailbox suspension list. If no tasks are suspended,

this pointer is NULL.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 101

Mailbox Suspension StructureMailbox Suspension StructureMailbox Suspension StructureMailbox Suspension Structure

Tasks can suspend on empty and full mailbox conditions. During the suspension process a
MB_SUSPEND structure is built. This structure contains information about the task and the
task�s mailbox request at the time of suspension. This suspension structure is linked onto the
MCB in a doubly linked, circular list and is allocated off of the suspending task�s stack.
There is one suspension block for every task suspended on the mailbox.

The order of the suspension block placement on the suspend list is determined at mailbox
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE mb_suspend_link
MB_MCB *mb_mailbox
TC_TCB *mb_suspended_task
UNSIGNED *mb_message_area
STATUS mb_return_status

Field SummaryField SummaryField SummaryField Summary

Field Description
mb_suspend_link A link node structure for linking with other suspended

blocks. It is used in a doubly linked circular suspension
list.

*mb_mailbox A pointer to the mailbox structure.
*mb_suspended_task A pointer to the Task Control Block of the suspended task.
*mb_message_area A pointer indicating where the suspended tasks�s message

buffer is.
mb_return_status The completion status of the task suspended on the

mailbox.

Mailbox n
MCB

task 0
MB_SUSPEND

task 1
MB_SUSPEND

task 2
MB_SUSPEND

task n
MB_SUSPEND

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

102

Mailbox FunctionsMailbox FunctionsMailbox FunctionsMailbox Functions

The following sections provide a brief description of the functions in the Mailbox
Component (MB). Review of the actual source code is recommended for further
information.

MBC_Create_Mailbox

Creates a mailbox and then places it on the list of created mailboxes.

STATUS MBC_Create_Mailbox (NU_MAILBOX *mailbox_ptr, CHAR
 *name, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

MBC_Delete_Mailbox

This function deletes a mailbox and removes it from the list of created mailboxes. All tasks
suspended on the mailbox are resumed. Note that this function does not free the memory
associated with the mailbox control block. That is the responsibility of the application.

STATUS MBC_Delete_Mailbox(NU_MAILBOX *mailbox_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 103

MBC_Send_To_Mailbox

This function sends a 4-word message to the specified mailbox. If there are one or more
tasks suspended on the mailbox for a message, the message is copied into the message area
of the first task waiting and that task is resumed. If the mailbox is full, suspension of the
calling task is possible.

STATUS MBC_Send_To_Mailbox(NU_MAILBOX *mailbox_ptr, VOID *message,
 UNSIGNED suspend)

Functions CaFunctions CaFunctions CaFunctions Calledlledlledlled

CSC_Place_On_List
CSC_Priority_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

MBC_Receive_From_Mailbox

This function receives a message from the specified mailbox. If there is a message currently
in the mailbox, the message is removed from the mailbox and placed in the caller�s area.
Otherwise, if no message is present in the mailbox, suspension of the calling task is possible.

STATUS MBC_Receive_From_Mailbox(NU_MAILBOX *mailbox_ptr,
 VOID *message, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

104

MBC_Cleanup

This function is responsible for removing a suspension block from a mailbox. It is not called
unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VOID MBC_Cleanup(VOID *information)

FFFFunctions Calledunctions Calledunctions Calledunctions Called

 CSC_Remove_From_List

MBCE_Create_Mailbox

This function performs error checking on the parameters supplied to the mailbox create
function.

STATUS MBCE_Create_Mailbox (NU_MAILBOX *mailbox_ptr,
 CHAR *name, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

MBC_Create_Mailbox

MBCE_Delete_Mailbox

This function performs error checking on the parameters supplied to the actual delete
mailbox function.

STATUS MBCE_Delete_Mailbox(NU_MAILBOX *mailbox_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

MBC_Delete_Mailbox

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 105

MBCE_Send_To_Mailbox

This function performs error checking on the parameters supplied to the send-to-mailbox
function.

STATUS MBCE_Send_To_Mailbox(NU_MAILBOX *mailbox_ptr,
 VOID *message,UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

MBC_Sent_To_Mailbox
TCCE_Suspend_Error

MBCE_Receive_From_Mailbox

This function performs error checking on the parameters supplied to the receive message
from mailbox function.

STATUS MBCE_Receive_From_Mailbox (NU_MAILBOX *mailbox_ptr,
 VOID *message, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

MBC_Receive_From_Mailbox
TCCE_Suspend_Error

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

106

MBF_Established_Mailboxes

Returns the current number of established mailboxes. Mailboxes previously deleted are no
longer considered established.

UNSIGNED MBF_Established_Mailboxes(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

MBF_Mailbox_Pointers

Builds a list of mailbox pointers, starting at the specified location. The number of mailbox
pointers placed in the list is equivalent to the total number of mailboxes or the maximum
number of pointers specified in the call.

UNSIGNED MBF_Mailbox_Pointers(NU_MAILBOX **pointer_list,
 UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 107

MBF_Mailbox_Information

Returns information about the specified mailbox. However, if the supplied mailbox pointer
is invalid, the function simply returns an error status.

STATUS MBF_Mailbox_Information(NU_MAILBOX *mailbox_ptr,
 CHAR *name, OPTION *suspend_type,
 DATA_ELEMENT *message_present,
 UNSIGNED *tasks_waiting, NU_TASK **first_task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

MBI_Initialize

This function initializes the data structures that control the operation of the Mailbox
Component. There are no mailboxes initially.

VOID MBI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

108

MBS_Reset_Mailbox

This function resets a mailbox back to the initial state. Any message in the mailbox is
discarded. Also, all tasks suspended on the mailbox are resumed with the reset completion
status.

STATUS MBS_Reset_Mailbox(NU_MAILBOX *mailbox_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_System_Protect
TCT_Unprotect

MBS_Broadcast_To_Mailbox

This function sends a message to all tasks currently waiting for a message from the mailbox.
If no tasks are waiting, this service behaves like a normal send message routine.

STATUS MBS_Broadcast_To_Mailbox(NU_MAILBOX *mailbox_ptr, VOID *message,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 109

MBSE_Reset_Mailbox

This function performs error checking on the parameters supplied to the actual reset mailbox
function.

STATUS MBSE_Reset_Mailbox(NU_MAILBOX *mailbox_ptr)

Functions CallFunctions CallFunctions CallFunctions Calledededed

MBS_Reset_Mailbox

MBSE_Broadcast_To_ Mailbox

This function performs error checking on the parameters supplied to the mailbox broadcast
function.

STATUS MBSE_Broadcast_To_Mailbox(NU_MAILBOX *mailbox_ptr,
 VOID *message, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

MBS_Broadcast_To_Mailbox
TCCE_Suspend_Error

Queue Component (QU)Queue Component (QU)Queue Component (QU)Queue Component (QU)

The Queue Component (QU) is responsible for processing all Nucleus PLUS queue
facilities. A Nucleus PLUS queue is a mechanism for tasks to communicate between each
other. Each queue is capable of holding multiple messages. A queue message consists of
one or more 32-bit words. Tasks may suspend while waiting for a message from an empty
queue. Conversely, tasks may suspend while trying to send to a queue that is in a full
condition. Queues are dynamically created and deleted by the user. Please see Chapter 3 of
the Nucleus PLUS Reference Manual for more detailed information about queues.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

110

Queue FilQueue FilQueue FilQueue Fileseseses

The Queue Component (QU) consists of nine files. Each source file of the Queue
Component is defined below.

File Description
QU_DEFS.H This file contains constants and data structure definitions specific

to the QU.
QU_EXTR.H All external interfaces to the QU are defined in this file.
QUD.C Global data structures for the QU are defined in this file.
QUI.C This file contains the initialization function for the QU.
QUF.C This file contains the information gathering functions for the QU.
QUC.C This file contains all of the core functions of the QU. Functions

that handle basic send-to-queue and receive-from-queue services
are defined in this file.

QUS.C This file contains supplemental functions of the QU. Functions
contained in this file are typically used less frequently than the
core functions.

QUCE.C This file contains the error checking function interfaces for the
core functions defined in QUC.C.

QUSE.C This file contains the error checking function interfaces for the
supplemental functions defined in QUS.C.

Queue Data StructuresQueue Data StructuresQueue Data StructuresQueue Data Structures

Created Queue ListCreated Queue ListCreated Queue ListCreated Queue List

Nucleus PLUS queues may be created and deleted dynamically. The Queue Control Block
(QCB) for each created queue is kept on a doubly linked, circular list. Newly created queues
are placed at the end of the list, while deleted queues are completely removed from the list.
The head pointer of this list is QUD_Created_Queues_List.

QCB QCB QCB QCB

QUD_Created_Queues_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 111

Created Queue List ProtectionCreated Queue List ProtectionCreated Queue List ProtectionCreated Queue List Protection

Nucleus PLUS protects the integrity of the Created Queues List from competing tasks and/or
HISRs. This is done by using an internal protection structure called QUD_List_Protect.
All queue creation and deletion is done under the protection of QUD_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for the

protection.

Total QueuesTotal QueuesTotal QueuesTotal Queues

The total number of currently created Nucleus PLUS queues is contained in the variable
QUD_Total_Queues. The contents of this variable corresponds to the number of QCBs on
the created list. Manipulation of this variable is also done under the
protection of QUD_List_Protect.

Queue Control Block Queue Control Block Queue Control Block Queue Control Block

The Queue Control Block QU_QCB contains the queue message area (one or more 32-bit
unsigned words) and other fields necessary for processing queue requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE qu_created
UNSIGNED qu_id
CHAR qu_name[NU_MAX_NAME]
DATA_ELEMENT qu_fixed_size
DATA_ELEMENT qu_fifo_suspend
DATA_ELEMENT qu_padding
UNSIGNED qu_queue_size
UNSIGNED qu_messages
UNSIGNED qu_message_size
UNSIGNED qu_available
UNSIGNED_PTR qu_start
UNSIGNED_PTR qu_end
UNSIGNED_PTR qu_read
UNSIGNED_PTR qu_write
UNSIGNED qu_tasks_waiting
struct QU_SUSPEND_STRUCT *qu_urgent_list
struct QU_SUSPEND_STRUCT *qu_suspension_list

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

112

Field SummaryField SummaryField SummaryField Summary

Field Description
qu_created This is the link node structure for queues. It is

linked into the created queues list, which is a
doubly linked, circular list.

qu_id This holds the internal queue identification of
0x51554555, which is equivalent to ASCII QUEU.

qu_name This is the user-specified, 8 character name for the
queue.

qu_fixed_size A flag that indicates if the size of the queue is fixed
or variable.

qu_fifo_suspend A flag that determines whether tasks suspend in fifo
or priority order.

qu_padding This is used to align the queue structure on an even
boundary. In some ports this field is not used.

qu_queue_size This is the total size of the queue.
qu_messages A flag that indicates if there is a message present in

the queue.
qu_message_size Holds the size of the queue message.
qu_available Tells how many bytes are available in the queue.
qu_start Stores the beginning of the queue.
qu_end Stores the end of the queue.
qu_read This is the read pointer.
qu_write This is the write pointer.
qu_tasks_waiting Indicates the number of tasks that are currently

suspended on the queue.
*qu_urgent_list A pointer to the suspension list for urgent

messages.
*qu_suspension_list The head pointer of the queue suspension list. If no

tasks are suspended, this pointer is NULL.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 113

Queue Suspension StructureQueue Suspension StructureQueue Suspension StructureQueue Suspension Structure

Tasks can suspend on empty and full queue conditions. During the suspension process a
QU_SUSPEND structure is built. This structure contains information about the task and the
task�s queue request at the time of suspension. This suspension structure is linked onto the
QCB in a doubly linked, circular list and is allocated off of the
suspending task�s stack. There is one suspension block for every task suspended on the
queue.

The order of the suspension block placement on the suspend list is determined at queue
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Field DeclaratField DeclaratField DeclaratField Declarationsionsionsions

QU_SUSPEND_STRUCT
CS_NODE qu_suspend_link
QU_QCB *qu_queue
TC_TCB *qu_suspended_task
UNSIGNED_PTR qu_message_area
UNSIGNED qu_message_size
UNSIGNED qu_actual_size
STATUS qu_return_status

Field SummaryField SummaryField SummaryField Summary

Field Description
qu_suspend_link A link node structure for linking with other suspended

blocks. It is used in a doubly linked, circular suspension list.
*qu_queue A pointer to the queue structure.
*qu_suspended_task A pointer to the Task Control Block of the suspended task.
qu_message_area A pointer indicating where the suspended task�s message

buffer is.
qu_message_size Stores the size of the requested message
qu_actual_size Stores the actual size of the message.
qu_return_status The completion status of the task suspended on the queue.

Queue n
QCB

task 0
QU_SUSPEND

task 1
QU_SUSPEND

task 2
QU_SUSPEND

task n
QU_SUSPEND

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

114

Queue FunctionsQueue FunctionsQueue FunctionsQueue Functions

The following sections provide a brief description of the functions in the Queue Component
(QU). Review of the actual source code is recommended for further
information.

QUC_Create_Queue

This function creates a queue and then places it on the list of created queues.

STATUS QUC_Create_Queue(NU_QUEUE *queue_ptr, CHAR *name,
 VOID *start_address, UNSIGNED queue_size,
 OPTION message_type, UNSIGNED message_size,
 OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

QUC_Delete_Queue

This function deletes a queue and removes it from the list of created queues. All tasks
suspended on the queue are resumed. Note that this function does not free the memory
associated with the queue. That is the responsibility of the application.

STATUS QUC_Delete_Queue(NU_QUEUE *queue_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 115

QUC_Send_To_Queue

This function sends a message to the specified queue. The caller determines the message
length. If there are one or more tasks suspended on the queue for a message, the message is
copied into the message area of the first waiting task. If the task�s request is satisfied, it is
resumed. Otherwise, if the queue cannot hold the message, suspension of the calling task is
an option of the caller.

STATUS QUC_Send_To_Queue(NU_QUEUE *queue_ptr, VOID
 *message, UNSIGNED size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

QUC_Receive_From_Queue

This function receives a message from the specified queue. The caller specifies the size of
the message. If there is a message currently in the queue, the message is removed from the
queue and placed in the caller�s area. Suspension is possible if the request cannot be
satisfied.

STATUS QUC_Receive_From_Queue(NU_QUEUE *queue_ptr, VOID
 *message, UNSIGNED size,
 UNSIGNED *actual_size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

116

QUC_Cleanup

This function is responsible for removing a suspension block from a queue. It is not called
unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VOID QUC_Cleanup(VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List

QUCE_Create_Queue

This function performs error checking on the parameters supplied to the queue create
function.

STATUS QUCE_Create_Queue(NU_QUEUE *queue_ptr, CHAR *name,
 VOID *start_address, UNSIGNED
 queue_size, OPTION message_type,
 UNSIGNED message_size, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

QUC_Create_Queue

QUCE_Delete_Queue

This function performs error checking on the parameter supplied to the queue delete
function.

STATUS QUCE_Delete_Queue(NU_QUEUE *queue_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

QUC_Delete_Queue

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 117

QUCE_Send_To_Queue

This function performs error checking on the parameters supplied to the send message to
queue function.

STATUS QUCE_Send_To_Queue(NU_QUEUE *queue_ptr, VOID
 *message, UNSIGNED size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

QUC_Send_To_Queue
TCCE_Suspend_Error

QUCE_Receive_From_Queue

This function performs error checking on the parameters supplied to the receive
message from queue function.

STATUS QUCE_Receive_From_Queue(NU_QUEUE *queue_ptr,
 VOID *message, UNSIGNED
 size, UNSIGNED*actual_size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

QUC_Receive_From_Queue
TCCE_Suspend_Error

QUF_Established_Queues

This function returns the current number of established queues. Queues previously deleted
are no longer considered established.

UNSIGNED QUF_Established_Queues(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

118

QUF_Queue_Information

This function returns information about the specified queue. However, if the supplied queue
pointer is invalid, the function simply returns an error status.

STATUS QUF_Queue_Information(NU_QUEUE*queue_ptr, CHAR *name,
 VOID **start_address, UNSIGNED*queue_size,
 UNSIGNED *available, UNSIGNED *messages,
 OPTION *message_type, UNSIGNED *message_size,
 OPTION *suspend_type, UNSIGNED *tasks_waiting,
 NU_TASK **first_task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

QUF_Queue_Pointers

Builds a list of queue pointers, starting at the specified location. The number of queue
pointers placed in the list is equivalent to the total number of queues or the maximum
number of pointers specified in the call.

UNSIGNED QUF_Queue_Pointers(NU_QUEUE **pointer_list,
 UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 119

QUI_Initialize

This function initializes the data structures that control the operation of the Queue
Management component. There are no queues initially.

VOID QUI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

QUS_Reset_Queue

This function resets the specified queue back to the original state. Any messages in the
queue are discarded. Also, any tasks currently suspended on the queue are resumed with the
reset status.

STATUS QUS_Reset_Queue(NU_QUEUE *queue_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_System_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

120

QUS_Send_To_Front_Of_Queue

This function sends a message to the front of the specified message queue. The
caller determines the message length. If there are any tasks suspended on the queue for a
message, the message is copied into the message area of the first waiting task and that task is
resumed. If there is enough room in the queue, the message is copied in front of all other
messages. If there is not enough room in the queue, suspension of the caller is possible.

STATUS QUS_Send_To_Front_Of_Queue(NU_QUEUE *queue_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task
[TCT_Check_Stack]

QUS_Broadcast_To_Queue

This function sends a message to all tasks waiting for a message from the specified queue. If
there are no tasks waiting for a message the service performs like a standard send request.

STATUS QUS_Broadcast_To_Queue(NU_QUEUE *queue_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List

CSC_Priority_Place_On_List

CSC_Remove_From_List

[HIC_Make_History_Entry]

TCC_Resume_Task

TCC_Suspend_Task

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 121

QUSE_Reset_Queue

This function performs error checking on the parameter supplied to the queue reset function.

STATUS QUSE_Reset_Queue(NU_QUEUE *queue_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

QUS_Reset_Queue

QUSE_Send_To_Front_Of_Queue

This function performs error checking on the parameters supplied to the send message to
front of queue function.

STATUS QUSE_Send_To_Front_Of_Queue(NU_QUEUE *queue_ptr, UNSIGNED size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

QUS_Send_To_Front_Of_Queue
TCCE_Suspend_Error

QUSE_Broadcast_To_Queue

This function performs error checking on the parameters supplied to the broadcast message
to queue function.

STATUS QUSE_Broadcast_To_Queue(NU_QUEUE *queue_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

QUS_Broadcast_To_Queue
TCCE_Suspend_Error

Pipe Component (PI)Pipe Component (PI)Pipe Component (PI)Pipe Component (PI)

The Pipe Component (PI) is responsible for processing all Nucleus PLUS pipe
facilities. A Nucleus PLUS pipe is a mechanism for tasks to communicate between each
other. Each pipe is capable of holding multiple messages. A pipe message consists of one
or more bytes. Tasks may suspend while waiting for a message from an empty pipe.
Conversely, tasks may suspend while trying to send to a pipe that is in a full condition.
Pipes are dynamically created and deleted by the user. Please see Chapter 3 of the Nucleus
PLUS Reference Manual for more detailed information about pipes.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

122

Pipe FilesPipe FilesPipe FilesPipe Files

The Pipe Component (PI) consists of nine files. Each source file of the Pipe
Component is defined below.

File Description
PI_DEFS.H This file contains constants and data structure definitions specific to the

PI.
PI_EXTR.H All external interfaces to the PI are defined in this file.
PID.C Global data structures for the PI are defined in this file.
PII.C This file contains the initialization function for the PI.
PIF.C This file contains the information gathering functions for the PI.
PIC.C This file contains all of the core functions of the PI. Functions that

handle basic send-to-pipe and receive-from-pipe services are defined in
this file.

PIS.C This file contains supplemental functions of the PI. Functions contained
in this file are typically used less frequently than the core functions.

PICE.C This file contains the error checking function interfaces for the core
functions defined in PIC.C.

PISE.C This file contains the error checking function interfaces for the
supplemental functions defined in PIS.C.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 123

Pipe Data StructuresPipe Data StructuresPipe Data StructuresPipe Data Structures

Created Pipe ListCreated Pipe ListCreated Pipe ListCreated Pipe List

Nucleus PLUS pipes may be created and deleted dynamically. The Pipe Control Block
(PCB) for each created pipe is kept on a doubly linked, circular list. Newly created pipes are
placed at the end of the list, while deleted pipes are completely removed from the list. The
head pointer of this list is PID_Created_Pipes_List.

Created Pipe List ProtectionCreated Pipe List ProtectionCreated Pipe List ProtectionCreated Pipe List Protection

Nucleus PLUS protects the integrity of the Created Pipes List from competing tasks and/or
HISRs. This is done by using an internal protection structure called PID_List_Protect.
All pipe creation and deletion is done under the protection of PID_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for the

protection.

PCB PCB PCB PCB

PID_Created_Pipes_List

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

124

Total PipesTotal PipesTotal PipesTotal Pipes

The total number of currently created Nucleus PLUS pipes is contained in the variable
PID_Total_Pipes. The contents of this variable correspond to the number of PCBs on the
created list. Manipulation of this variable is also done under the
protection of PID_List_Protect.

Pipe Control Block Pipe Control Block Pipe Control Block Pipe Control Block

The Pipes Control Block PI_PCB contains the pipe message area (1 or more bytes) and
other fields necessary for processing pipe requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE pi_created
UNSIGNED pi_id
CHAR pi_name[NU_MAX_NAME]
DATA_ELEMENT pi_fixed_size
DATA_ELEMENT pi_fifo_suspend
DATA_ELEMENT pi_padding[PAD_2]
UNSIGNED pi_pipe_size
UNSIGNED pi_message_size
UNSIGNED pi_available
BYTE_PTR pi_start
BYTE_PTR pi_end
BYTE_PTR pi_read
BYTE_PTR pi_write
UNSIGNED pi_tasks_waiting
UNSIGNED pi_messages
struct PI_SUSPEND_STRUCT *pi_urgent_list
struct PI_SUSPEND_STRUCT *pi_suspension_list

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 125

Field SummaryField SummaryField SummaryField Summary

Field Description
pi_created This is the link node structure for pipes. It is linked

into the created pipes list, which is a doubly linked,
circular list.

pi_id This holds the internal pipe identification of
0x50495045, which is equivalent to ASCII PIPE.

pi_name This is the user-specified, 8 character name for the
pipe.

pi_fixed_size A flag that indicates if the size of the pipe is fixed or
variable.

pi_fifo_suspend A flag that determines whether tasks suspend in fifo
or priority order.

pi_padding This is used to align the pipe structure on an even
boundary. In some ports this field is not used.

pi_pipe_size This is the total size of the pipe.
pi_messages A flag that indicates if there is a message present in

the pipe.
pi_message_size Holds the size of the message.
pi_available Tells how many bytes are available in the pipe.
pi_start Stores the beginning of the pipe.
pi_end Stores the end of the pipe.
pi_read This is the read pointer.
pi_write This is the write pointer.
pi_tasks_waiting Indicates the number of tasks that are currently

suspended on the pipe.
*pi_urgent_list A pointer to the suspension list for urgent messages.
*pi_suspension_list The head pointer of the pipe suspension list. If no

tasks are suspended, this pointer is NULL.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

126

Pipe Suspension StructurePipe Suspension StructurePipe Suspension StructurePipe Suspension Structure

Tasks can suspend on empty and full pipe conditions. During the suspension process a
PI_SUSPEND structure is built. This structure contains information about the task and the
task�s pipe request at the time of suspension. This suspension structure is linked onto the
PCB in a doubly linked, circular list and is allocated off of the suspending task�s stack.
There is one suspension block for every task suspended on the pipe.

The order of the suspension block placement on the suspend list is determined at pipe
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE pi_suspend_link
PI_PCB *pi_pipe
TC_TCB *pi_suspended_task
BYTE_PTR pi_message_area
UNSIGNED pi_message_size
UNSIGNED pi_actual_size
STATUS pi_return_status

Field SuField SuField SuField Summarymmarymmarymmary

Field Description
pi_suspend_link A link node structure for linking with other suspended

blocks. It is used in a doubly linked, circular suspension
list.

*pi_pipe A pointer to the pipe structure.
*pi_suspended_task A pointer to the Task Control Block of the suspended task.
pi_message_area A pointer indicating where the suspended task�s message

buffer is.
pi_message_size Stores the size of the requested message
pi_actual_size Stores the actual size of the message.
pi_return_status The completion status of the task suspended on the pipe.

Pipe FunctionsPipe FunctionsPipe FunctionsPipe Functions

The following sections provide a brief description of the functions in the Pipe
Component (PI). Review of the actual source code is recommended for further
information.

Pipe n
PCB

task 0
PI_SUSPEND

task 1
PI_SUSPEND

task 2
PI_SUSPEND

task n
PI_SUSPEND

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 127

PIC_Create_Pipe

Creates a pipe and then places it on the list of created pipes.

STATUS PIC_Create_Pipe(NU_PIPE *pipe_ptr, CHAR *name, VOID
 *start_address, UNSIGNED pipe_size,
 OPTION message_type, UNSIGNED message_size,
 OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

PIC_Delete_Pipe

Deletes a pipe and removes it from the list of created pipes. All tasks suspended on the pipe
are resumed. Note that this function does not free the memory associated with the pipe.
That is the responsibility of the application.

STATUS PIC_Delete_Pipe(NU_PIPE *pipe_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

128

PIC_Send_To_Pipe

This function sends a message to the specified pipe. The caller determines the message
length. If there are one or more tasks suspended on the pipe for a message, the message is
copied into the message area of the first waiting task. If the task�s request is satisfied, it is
resumed. Otherwise, if the pipe cannot hold the message, suspension of the calling task is an
option of the caller.

STATUS PIC_Send_To_Pipe(NU_PIPE *pipe_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

PIC_Receive_From_Pipe

This function receives a message from the specified pipe. The caller specifies the size of the
message. If there is a message currently in the pipe, themessage is removed from the pipe
and placed in the caller�s area. Suspension is possible if the request cannot be satisfied.

STATUS PIC_Receive_From_Pipe(NU_PIPE *pipe_ptr, VOID *message,
 UNSIGNED size, UNSIGNED *actual_size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task
TCC_Task_Priority
TCT_Check_Stack]
TCT_Control_To_System
TCT_Current_Thread
TCT_System_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 129

PIC_Cleanup

This function is responsible for removing a suspension block from a pipe. It is not called
unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VOID PIC_Cleanup(VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List

PICE_Create_Pipe

This function performs error checking on the parameters supplied to the pipe create function.

STATUS PICE_Create_Pipe(NU_PIPE *pipe_ptr, CHAR *name, VOID *start_address,
 UNSIGNED pipe_size, OPTION message_type,
 UNSIGNED message_size, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PIC_Create_Pipe

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

130

PICE_Delete_Pipe

This function performs error checking on the parameter supplied to the pipe delete function.

STATUS PICE_Delete_Pipe(NU_PIPE *pipe_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PIC_Delete_Pipe

PICE_Send_To_Pipe

This function performs error checking on the parameters supplied to the send message to
pipe function.

STATUS PICE_Send_To_Pipe(NU_PIPE *pipe_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PIC_Send_To_Pipe
TCCE_Suspend_Error

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 131

PICE_Receive_From_Pipe

This function performs error checking on the parameters supplied to the receive message
from pipe function.

STATUS PICE_Receive_From_Pipe(NU_PIPE *pipe_ptr, VOID *message,
 UNSIGNED size, UNSIGNED *actual_size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PIC_Receive_From_Pipe
TCCE_Suspend_Error

PIF_Established_Pipes

Returns the current number of established pipes. Pipes previously deleted are no longer
considered established.

UNSIGNED PIF_Established_Pipes(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

132

PIF_Pipe_Information

Returns information about the specified pipe. However, if the supplied pipe pointer is
invalid, the function simply returns an error status.

STATUS PIF_Pipe_Information(NU_PIPE *pipe_ptr, CHAR *name, VOID start_address,
 UNSIGNED *pipe_size, UNSIGNED *available,
 UNSIGNED *messages, OPTION *message_type,
 UNSIGNED *message_size, OPTION *suspend_type,
 UNSIGNED *tasks_waiting, NU_TASK **first_task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

PIF_Pipe_Pointers

Builds a list of pipe pointers, starting at the specified location. The number of pipe pointers
placed in the list is equivalent to the total number of pipes or the maximum number of
pointers specified in the call.

 UNSIGNED PIF_Pipe_Pointers(NU_PIPE **pointer_list, UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 133

PII_Initialize

This function initializes the data structures that control the operation of the Pipe
Component. There are no pipes initially.

VOID PII_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 None

PIS_Reset_Pipe

This function resets the specified pipe back to the original state. Any messages in the pipe
are discarded. Also, any tasks currently suspended on the pipe are resumed with the reset
status.

STATUS PIS_Reset_Pipe(NU_PIPE *pipe_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_System_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

134

PIS_Send_To_Front_Of_Pipe

This function sends a message to the front of the specified message pipe. The caller
determines the message length. If there are any tasks suspended on the pipe for a message,
the message is copied into the message area of the first waiting task and that task is resumed.
If there is enough room in the pipe, the message is copied in front of all other messages. If
there is not enough room in the pipe, suspension of the caller is possible.

STATUS PIS_Send_To_Front_Of_Pipe(NU_PIPE *pipe_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

PIS_Broadcast_To_Pipe

This function sends a message to all tasks waiting for a message from the specified pipe. If
there are no tasks waiting for a message the service performs like a standard send request.

STATUS PIS_Broadcast_To_Pipe(NU_PIPE *pipe_ptr,
 VOID *message, UNSIGNED size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
TCC_Suspend_Task

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 135

PISE_Reset_Pipe

This function performs error checking on the parameter supplied to the pipe reset function.

STATUS PISE_Reset_Pipe(NU_PIPE *pipe_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PIS_Reset_Pipe

PISE_Send_To_Front_Of_Pipe

This function performs error checking on the parameters supplied to the send message to
front of pipe function.

STATUS PISE_Send_To_Front_Of_Pipe(NU_PIPE *pipe_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PIS_Send_To_Front_Of_Pipe
TCCE_Suspend_Error

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

136

PISE_Broadcast_To_Pipe

This function performs error checking on the parameters supplied to the broadcast message
to pipe function.

STATUS PISE_Broadcast_To_Pipe(NU_PIPE *pipe_ptr, VOID *message,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PIS_Broadcast_To_Pipe
TCCE_Suspend_Error

Semaphore Component (SM)Semaphore Component (SM)Semaphore Component (SM)Semaphore Component (SM)

The Semaphore Component (SM) is responsible for processing all Nucleus PLUS
semaphore facilities. A Nucleus PLUS semaphore is a mechanism to synchronize the
execution of various tasks in an application. Nucleus PLUS provides counting
semaphores that range in value from 0 to 4,294,967,294. Tasks may suspend while waiting
for a non-zero semaphore value. Semaphores are dynamically created and deleted by the
user. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about semaphores.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 137

Semaphore FilesSemaphore FilesSemaphore FilesSemaphore Files

The Semaphore Component (SM) consists of nine files. Each source file of the
Semaphore Component is defined below.

File Description
SM_DEFS.H This file contains constants and data structure definitions

specific to the SM.
SM_EXTR.H All external interfaces to the SM are defined in this file.
SMD.C Global data structures for the SM are defined in this file.
SMI.C This file contains the initialization function for the SM.
SMF.C This file contains the information gathering functions for the

SM.
SMC.C This file contains all of the core functions of the SM.

Functions that handle basic obtain-semaphore and release-
semaphore services are defined in this file.

SMS.C This file contains supplemental functions of the SM.
Functions contained in this file are typically used less
frequently than the core functions.

SMCE.C This file contains the error checking function interfaces for
the core functions defined in SMC.C.

SMSE.C This file contains the error checking function interfaces for
the supplemental functions defined in SMS.C.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

138

Semaphore Data StructuresSemaphore Data StructuresSemaphore Data StructuresSemaphore Data Structures

Created Semaphore ListCreated Semaphore ListCreated Semaphore ListCreated Semaphore List

Nucleus PLUS semaphores may be created and deleted dynamically. The Semaphore
Control Block (SCB) for each created semaphore is kept on a doubly linked, circular list.
Newly created semaphores are placed at the end of the list, while deleted
semaphores are completely removed from the list. The head pointer of this list is
SMD_Created_Semaphores_List.

Created Semaphore List ProtectionCreated Semaphore List ProtectionCreated Semaphore List ProtectionCreated Semaphore List Protection

Nucleus PLUS protects the integrity of the Created Semaphores List from competing tasks
and/or HISRs. This is done by using an internal protection structure called
SMD_List_Protect. All semaphore creation and deletion is done under the protection of
SMD_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for the

protection

SCB SCB SCB SCB

SMD_Created_Semaphores_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 139

Total SemaphoresTotal SemaphoresTotal SemaphoresTotal Semaphores

The total number of currently created Nucleus PLUS semaphores is contained in the variable
SMD_Total_Semaphores. The contents of this variable correspond to the number of SCBs
on the created list. Manipulation of this variable is also done under the protection of
SMD_List_Protect.

Semaphore Control BlockSemaphore Control BlockSemaphore Control BlockSemaphore Control Block

The Semaphores Control Block SM_SCB contains the semaphore count and other fields
necessary for processing semaphore requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE sm_created
UNSIGNED sm_id
CHAR sm_name[NU_MAX_NAME]
UNSIGNED sm_semaphore_count
DATA_ELEMENT sm_fifo_suspend
DATA_ELEMENT sm_padding[PAD_1]
UNSIGNED sm_tasks_waiting
struct SM_SUSPEND_STRUCT *sm_suspension_list

Field SummaryField SummaryField SummaryField Summary

Field Description
sm_created This is the link node structure for semaphores. It is

linked into the created semaphores list, which is a
doubly linked, circular list.

sm_id This holds the internal semaphore identification of
0x53454D41, which is equivalent to ASCII SEMA.

sm_name This is the user-specified, 8 character name for the
semaphore.

sm_semaphore_count Stores the current count of the semaphore.
sm_fifo_suspend A flag that determines whether tasks suspend in fifo or

priority order.
sm_padding This is used to align the semaphore structure on an even

boundary.
 In some ports this field is not used.
sm_tasks_waiting Indicates the number of tasks that are currently

suspended on the semaphore.
*sm_suspension_list The head pointer of the semaphore suspension list. If no

tasks are suspended, this pointer is NULL.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

140

Semaphore Suspension StructureSemaphore Suspension StructureSemaphore Suspension StructureSemaphore Suspension Structure

Tasks can suspend on a semaphore whose current count is zero. During the suspension
process a SM_SUSPEND_STRUCT structure is built. This structure contains information
about the task and the task�s semaphore request at the time of suspension. This suspension
structure is linked onto the SCB in a doubly linked, circular list and is allocated from the
suspending task�s stack. There is one suspension block for every task suspended on the
semaphore.

The order of the suspension block placement on the suspend list is determined at semaphore
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE sm_suspend_link
SM_SCB *sm_semaphore
TC_TCB *sm_suspended_task
STATUS sm_return_status

Field SummaryField SummaryField SummaryField Summary

Field Description
sm_suspend_link A link node structure for linking with other suspended

blocks. It is used in a doubly linked, circular suspension list.
*sm_semaphore A pointer to the semaphore structure.
*sm_suspended_task A pointer to the Task Control Block of the suspended task.
sm_return_status The completion status of the task suspended on the

semaphore

Semaphore n
SCB

task 0
SM_SUSPEND

task 1
SM_SUSPEND

task 2
SM_SUSPEND

task n
SM_SUSPEND

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 141

Semaphore FunctionsSemaphore FunctionsSemaphore FunctionsSemaphore Functions

The following sections provide a brief description of the functions in the Semaphore
Component (SM). Review of the actual source code is recommended for further
information.

SMC_Create_Semaphore

This function creates a semaphore and places it on the list of created semaphores.

STATUS SMC_Create_Semaphore(NU_SEMAPHORE *semaphore_ptr, CHAR *name,
 UNSIGNED initial_count, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

SMC_Delete_Semaphore

This function deletes a semaphore and removes it from the list of created semaphores. All
tasks suspended on the semaphore are resumed. Note that this function does not free the
memory associated with the semaphore control block. That is the responsibility of the
application.

STATUS SMC_Delete_Semaphore(NU_SEMAPHORE *semaphore_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

142

SMC_Obtain_Semaphore

This function obtains an instance of the semaphore. An instance corresponds to
decrementing the counter by one. If the counter is greater than zero at the time of this call,
this function can be completed immediately. Otherwise, suspension is possible.

STATUS SMC_Obtain_Semaphore(NU_SEMAPHORE *semaphore_ptr, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
[HIC_Make_History_Entry]
TCC_Suspend_Task
TCC_Task_Priority
[TCT_Check_Stack]
TCT_Current_Thread
TCT_System_Protect
TCT_Unprotect

SMC_Release_Semaphore

This function releases a previously obtained semaphore. If one or more tasks are waiting,
the first task is given the released instance of the semaphore. Otherwise, the semaphore
instance counter is simply incremented.

STATUS SMC_Release_Semaphore(NU_SEMAPHORE *semaphore_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_System_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 143

SMC_Cleanup

This function is responsible for removing a suspension block from a semaphore. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as
at suspension time) is already in effect.

VOID SMC_Cleanup(VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List

SMCE_Create_Semaphore

This function performs error checking on the parameters supplied to the create
semaphore function.

STATUS SMCE_Create_Semaphore(NU_SEMAPHORE *semaphore_ptr, CHAR *name,
 UNSIGNED initial_count, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

SMC_Create_Semaphore

SMCE_Delete_Semaphore

This function performs error checking on the parameters supplied to the delete
semaphore function.

STATUS SMCE_Delete_Semaphore(NU_SEMAPHORE *semaphore_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

SMC_Delete_Semaphore

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

144

SMCE_Obtain_Semaphore

This function performs error checking on the parameters supplied to the obtain
semaphore function.

STATUS SMCE_Obtain_Semaphore(NU_SEMAPHORE *semaphore_ptr, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

SMC_Obtain_Semaphore
TCCE_Suspend_Error

SMCE_Release_Semaphore

This function performs error checking on the parameters supplied to the release
semaphore function.

STATUS SMCE_Release_Semaphore(NU_SEMAPHORE *semaphore_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

SMC_Release_Semaphore

SMF_Established_Semaphores

This function returns the current number of established semaphores. Semaphores previously
deleted are no longer considered established.

UNSIGNED SMF_Established_Semaphores(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 145

SMF_Semaphore_Pointers

Builds a list of semaphore pointers, starting at the specified location. The number of
semaphore pointers placed in the list is equivalent to the total number of semaphores or the
maximum number of pointers specified in the call.

UNSIGNED SMF_Semaphore_Pointers(NU_SEMAPHORE **pointer_list,
 UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

SMF_Semaphore_Information

This function returns information about the specified semaphore. However, if the supplied
semaphore pointer is invalid, the function simply returns an error status.

STATUS SMF_Semaphore_Information (NU_SEMAPHORE *semaphore_ptr,
 CHAR *name, UNSIGNED*current_count,
 OPTION *suspend_type,
 UNSIGNED tasks_waiting,
 NU_TASK **first_task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

146

SMI_Initialize

This function initializes the data structures that control the operation of the Semaphore
Component. There are no semaphores initially.

VOID SMI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

SMS_Reset_Semaphore

This function resets a semaphore back to the initial state. All tasks suspended on the
semaphore are resumed with the reset completion status.

STATUS SMS_Reset_Semaphore(NU_SEMAPHORE *semaphore_ptr,
 UNSIGNED initial_count)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_System_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 147

SMSE_Reset_Semaphore

This function performs error checking on the parameters supplied to the reset
semaphore function.

STATUS SMSE_Reset_Semaphore(NU_SEMAPHORE *semaphore_ptr,
 UNSIGNED initial_count)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 SMS_Reset_Semaphore

Event Group Component (EV)Event Group Component (EV)Event Group Component (EV)Event Group Component (EV)

The Event Group Component (EV) is responsible for processing all Nucleus PLUS event
group facilities. A Nucleus PLUS event is a mechanism to indicate that a certain system
event has occurred. An event is represented by a single bit in an event group. This bit is
called an event flag. There are 32 event flags in each event group. Tasks may suspend while
waiting for a particular set of event flags. Event groups are
dynamically created and deleted by the user. Please see Chapter 3 of the Nucleus PLUS
Reference Manual for more detailed information about events.

Event Group FilesEvent Group FilesEvent Group FilesEvent Group Files

The Event Group Component (EV) consists of seven files. Each source file of the Event
Group Component is defined below.

File Description
EV_DEFS.H This file contains constants and data structure definitions specific to

the EV.
EV_EXTR.H All external interfaces to the EV are defined in this file.
EVD.C Global data structures for the EV are defined in this file.
EVI.C This file contains the initialization function for the EV.
EVF.C This file contains the information gathering functions for the EV.
EVC.C This file contains all of the core functions of the EV. Functions that

handle basic set-event and retrieve-event services are defined in this
file.

EVCE.C This file contains the error checking function interfaces for the core
functions defined in EVC.C.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

148

Event Group Data StructuresEvent Group Data StructuresEvent Group Data StructuresEvent Group Data Structures

Created Event Group ListCreated Event Group ListCreated Event Group ListCreated Event Group List

Nucleus PLUS events may be created and deleted dynamically. The Event Group Control
Block (GCB) for each created event group is kept on a doubly linked, circular list. Newly
created event groups are placed at the end of the list, while deleted event groups are
completely removed from the list. The head pointer of this list is
EVD_Created_Events_Group_List.

Created EvenCreated EvenCreated EvenCreated Event Group List Protectiont Group List Protectiont Group List Protectiont Group List Protection

Nucleus PLUS protects the integrity of the Created Events Group List from competing tasks
and/or HISRs. This is done by using an internal protection structure called
EVD_List_Protect. All event group creation and deletion is done under the protection of
EVD_List_Protect.

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Functions CalledFunctions CalledFunctions CalledFunctions Called

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for

protection

GCB GCB GCB GCB

EVD_Created_Events_Group_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 149

Total Event GroupsTotal Event GroupsTotal Event GroupsTotal Event Groups

The total number of currently created Nucleus PLUS event groups is contained in the
variable EVD_Total_Event_Groups. The contents of this variable correspond to the
number of GCBs on the created list. Manipulation of this variable is also done under the
protection of EVD_List_Protect.

Event Group Control BlockEvent Group Control BlockEvent Group Control BlockEvent Group Control Block

The Event Group Control Block EV_GCB contains the current event flags and other fields
necessary for processing event requests.

Field DeclaratField DeclaratField DeclaratField Declarationsionsionsions

CS_NODE ev_created
UNSIGNED ev_id
CHAR ev_name[NU_MAX_NAME]
UNSIGNED ev_current_events
UNSIGNED ev_tasks_waiting
struct EV_SUSPEND_STRUCT *ev_suspension_list

Field SummaryField SummaryField SummaryField Summary

Field Description
ev_created This is the link node structure for events. It is linked

into the created events group list, which is a doubly
linked, circular list.

ev_id This holds the internal event group identification of
0x45564E54, which is equivalent to ASCII EVNT.

ev_name This is the user-specified, 8 character name for the
event group.

ev_current_events Contains the current event flags.
ev_tasks_waiting Indicates the number of tasks that are currently

suspended on an event group.
*ev_suspension_list The head pointer of the event group suspension list.

If no tasks are suspended, this pointer is NULL.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

150

Event Group Suspension StructureEvent Group Suspension StructureEvent Group Suspension StructureEvent Group Suspension Structure

Tasks can suspend when an event group does not match the user specified combination of
event flags. During the suspension process the EV_SUSPEND_STRUCT structure is built.
This structure contains information about the task and the task�s event group request at the
time of suspension. This suspension structure is linked onto the GCB in a doubly linked,
circular list and is allocated off of the suspending task�s stack. There is one suspension
block for every task suspended on the event group.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE ev_suspend_link
EV_GCB *ev_event_group
UNSIGNED ev_requested_events
DATA_ELEMENT ev_operation
DATA_ELEMENT ev_padding[PAD_1]
TC_TCB *ev_suspended_task
STATUS ev_return_status
UNSIGNED ev_actual_events

Event Group n
GCB

task 0
EV_SUSPEND

task 1
EV_SUSPEND

task 2
EV_SUSPEND

task n
EV_SUSPEND

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 151

Field SummaryField SummaryField SummaryField Summary

Field Description
ev_suspend_link A link node structure for linking with other

suspended blocks. It is used in a doubly-linked
circular suspension list

*em_event_group A pointer to the event group structure.
ev_requested_events The event group that has been requested.
ev_operation The type of operation that is requested on the event

group. This is typically some sort of AND/OR
combination.

ev_padding This is used to align the suspend event group
structure on an even boundary. In some ports this
field is not used.

*ev_suspended_task A pointer to the Task Control Block of the
suspended task.

ev_return_status The completion status of the task suspended on the
event group.

ev_actual_events The set of actual event flags returned by the
request.

Event Group FunctionsEvent Group FunctionsEvent Group FunctionsEvent Group Functions

The following sections provide a brief description of the functions in the Event Group
Component (EV). Review of the actual source code is recommended for further
information.

EVC_Create_Event_Group

Creates an event group and then places it on the list of created event groups.

STATUS EVC_Create_Event_Group(NU_EVENT_GROUP *event_group_ptr, CHAR *name)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

152

EVC_Delete_Event_Group

Deletes an event group and removes it from the list of created event groups. All tasks
suspended on the event group are resumed. Note that this function does not free the memory
associated with the event group control block. That is the responsibility of the application.

STATUS EVC_Delete_Event_Group(NU_EVENT_GROUP *event_group_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Protect
TCT_Set_Current_Protect
TCT_System_Protect
TCT_System_Unprotect
TCT_Unprotect

EVC_Set_Events

Sets event flags within the specified event flag group. Event flags may be ANDed or ORed
against the current events of the group. Tasks suspended on a group are resumed when the
requested event is satisfied.

STATUS EVC_Set_Events(NU_EVENT_GROUP *event_group_ptr,
 UNSIGNED events, OPTION operation)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_System_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 153

EVC_Retrieve_Events

Retrieves various combinations of event flags from the specified event group. If the group
does not contain the necessary flags, suspension of the calling task is possible.

STATUS EVC_Retrieve_Events (NU_EVENT_GROUP *event_group_ptr,
 UNSIGNED requested_events, OPTION operation,
 UNSIGNED *retrieved_events, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
TCC_Suspend_Task
[TCT_Check_Stack]
TCT_Current_Thread
TCT_System_Protect
TCT_Unprotect

EVC_Cleanup

This function is responsible for removing a suspension block from an event group. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as
at suspension time) is already in effect.

VOID EVC_Cleanup(VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

154

EVCE_Create_Event_Group

This function performs error checking on the parameters supplied to the create event group
function.

STATUS EVCE_Create_Event_Group(NU_EVENT_GROUP *event_group_ptr, CHAR *name)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 EVC_Create_Event_Group

EVCE_Delete_Event_Group

This function performs error checking on the parameters supplied to the delete event group
function.

STATUS EVCE_Delete_Event_Group(NU_EVENT_GROUP *event_group_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 EVC_Delete_Event_Group

EVCE_Set_Events

This function performs error checking on the parameters supplied to the set events group
function.

STATUS EVCE_Set_Events(NU_EVENT_GROUP *event_group_ptr,
 UNSIGNED events, OPTION operation)

Functions CalledFunctions CalledFunctions CalledFunctions Called
 EVC_Set_Events

EVCE_Retrieve_Events

This function performs error checking on the parameter supplied to the retrieve events
function.

STATUS EVCE_Retrieve_Events(NU_EVENT_GROUP *event_group_ptr,
 UNSIGNED requested_events, OPTION operation,
 UNSIGNED *retrieved_events, UNSIGNED suspend)

FunFunFunFunctions Calledctions Calledctions Calledctions Called
EVC_Retrieve_Events
TCCE_Suspend_Error

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 155

EVF_Established_Event_Groups

Returns the current number of established event groups. Event groups previously deleted are
no longer considered established.

UNSIGNED EVF_Established_Event_Groups(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

EVF_Event_Group_Pointers

Builds a list of event group pointers, starting at the specified location. The number of event
group pointers placed in the list is equivalent to the total number of event groups or the
maximum number of pointers specified in the call.

UNSIGNED EVF_Event_Group_Pointers(NU_EVENT_GROUP **pointer_list,
 UNSIGNED maximum_pointers)

FunctionsFunctionsFunctionsFunctions Called Called Called Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

EVF_Event_Group_Information

Returns information about the specified event group. However, if the supplied event group
pointer is invalid, the function simply returns an error status.

STATUS EVF_Event_Group_Information(NU_EVENT_GROUP *event_group_ptr,
 CHAR *name, UNSIGNED *event_flags,
 UNSIGNED *tasks_waiting,
 NU_TASK **first_task)

FunctiFunctiFunctiFunctions Calledons Calledons Calledons Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

156

EVI_Initialize

This function initializes the data structures that control the operation of the Event Group
Component. There are no event groups initially.

VOID EVI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

 None

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 157

Partition Memory Component (PM)Partition Memory Component (PM)Partition Memory Component (PM)Partition Memory Component (PM)

The Partition Memory Component (PM) is responsible for processing all Nucleus PLUS
partition memory facilities. A Nucleus PLUS partition memory pool contains a specific
number of fixed-size memory partitions. Tasks may suspend while waiting for a memory
partition from an empty pool. Partition pools are dynamically created and deleted by the
user. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about partition memory pools.

Partition Memory FilesPartition Memory FilesPartition Memory FilesPartition Memory Files

The Partition Memory Component (PM) consists of seven files. Each source file of the
Partition Memory Component is defined below.

File Description
PM_DEFS.H This file contains constants and data structure definitions

specific to the PM.
PM_EXTR.H All external interfaces to the PM are defined in this file.
PMD.C Global data structures for the PM are defined in this file.
PMI.C This file contains the initialization function for the PM.
PMF.C This file contains the information gathering functions for the

PM.
PMC.C This file contains all of the core functions of the PM. Functions

that handle basic allocate-memory and deallocate-memory
services are defined in this file.

PMCE.C This file contains the error checking function interfaces for the
core functions defined in PMC.C.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

158

Partition Memory Data StructuresPartition Memory Data StructuresPartition Memory Data StructuresPartition Memory Data Structures

Created Partition Memory ListCreated Partition Memory ListCreated Partition Memory ListCreated Partition Memory List

Nucleus PLUS partition pools may be created and deleted dynamically. The Partition
Memory Control Block (PCB) for each created partition memory pool is kept on a doubly
linked, circular list. Newly created partition memory pools are placed at the end of the list,
while deleted partition memory pools are completely removed from the list. The head
pointer of this list is PMD_Created_Pools_List.

Created Partition Memory List ProtectionCreated Partition Memory List ProtectionCreated Partition Memory List ProtectionCreated Partition Memory List Protection

Nucleus PLUS protects the integrity of the Created Partition Memory List from
competing tasks and/or HISRs. This is done by using an internal protection structure called
PMD_List_Protect. All partition memory creation and deletion is done under the
protection of PMD_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for

the protection.

PCB PCB PCB PCB

PMD_Created_Pools_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 159

Total Partition PoolsTotal Partition PoolsTotal Partition PoolsTotal Partition Pools

The total number of currently created Nucleus PLUS partition memory pools is
contained in the variable PMD_Total_Pools. The content of this variable
corresponds to the number of PCBs on the created list. Manipulation of this variable is also
done under the protection of PMD_List_Protect.

Available Partitions ListAvailable Partitions ListAvailable Partitions ListAvailable Partitions List

The Available Partitions List is a singly linked NULL terminated list, which contains the
available partitions. The PCB contains pointers to the starting address of the list as well as
the next available partition in the list. Allocated partitions are removed from the front of the
list and deallocated partitions are place at the front of the list. Each partition has a header
block that links the partitions together.ports this field is not used.

PCB PM_HEADER 0

PM_HEADER 1

PM_HEADER n

NULL

pm_start_address

pm_available_list

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

160

Partition Pool Partition Pool Partition Pool Partition Pool Control BlockControl BlockControl BlockControl Block

The Partition Memory Pool Control Block PM_PCB contains the starting address of the
current memory pool and other fields necessary for processing partition pool requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE pm_created
UNSIGNED pm_id
CHAR pm_name[NU_MAX_NAME]
VOID *pm_start_address
UNSIGNED pm_pool_size
UNSIGNED pm_partition_size
UNSIGNED pm_available
UNSIGNED pm_allocated
struct PM_HEADER_STRUCT *pm_available_list
DATA_ELEMENT pm_fifo_suspend
DATA_ELEMENT pm_padding[PAD_1]
UNSIGNED pm_tasks_waiting
struct PM_SUSPEND_STRUCT *pm_suspension_list

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 161

Field SummaryField SummaryField SummaryField Summary

Field Description
pm_created This is the link node structure for partition memory

pools. It is linked into the created partition pools
list, which is a doubly linked, circular list.

pm_id This holds the internal partition memory pool
identification of 0x50415254, which is equivalent
to ASCII PART.

pm_name This is the user-specified, 8 character name for the
partition memory pool.

*pm_start_address This is the starting address of the current partition
memory pool.

pm_pool_size Holds the size of the partition memory pool.
pm_partition_size This is the size of the current memory pool partition.
pm_available This is the number of partitions available for use in

the current memory pool.
pm_allocated Holds the number of allocated partitions.
*pm_available_list This is the list of available partitions of the current

memory pool.
pm_fifo_suspend A flag that determines whether tasks suspend in fifo

or priority order.
pm_padding This is used to align the partition memory pool

structure on an even boundary. In some ports this
field is not used.

pm_tasks_waiting Indicates the number of tasks that are currently
suspended on a partition memory pool.

*pm_suspension_list The head pointer of the partition memory pool
suspension list. If no tasks are suspended, this
pointer is NULL.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

162

Partition Memory Pool Header StructurePartition Memory Pool Header StructurePartition Memory Pool Header StructurePartition Memory Pool Header Structure

The partition header structure PM_HEADER is placed at the beginning of each
available partition. Each header contains a pointer to the next available partition, except for
the last partition, which points to a null terminator. Each partition header also contains a
pointer to its PCB (Partition Memory Pool Control Block).

Field DeclarationsField DeclarationsField DeclarationsField Declarations

struct PM_HEADER_STRUCT *pm_next_available
PM_PCB *pm_partition_pool

Field SummaryField SummaryField SummaryField Summary

Field Description
*pm_next_available A pointer to the next partition in the available list.
pm_partition_pool A pointer to this partition�s PCB.

Partition Memory PooPartition Memory PooPartition Memory PooPartition Memory Pool Suspension Structurel Suspension Structurel Suspension Structurel Suspension Structure

Tasks can suspend on empty and full partition memory pool conditions. During the
suspension process a PM_SUSPEND structure is built. This structure contains
information about the task and the task�s partition pool request at the time of
suspension. This suspension structure is linked to the PCB in a doubly linked, circular list
and is allocated from the suspending task�s stack. There is one suspension block for every
task suspended on the partition memory pool.

The suspension block's position on the suspend list is determined at partition pool creation.
If a FIFO suspension was selected, the suspension block is added to the end of the list.
Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks with tasks of equal or higher priority.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 163

Partition Memory Pool Header StructurePartition Memory Pool Header StructurePartition Memory Pool Header StructurePartition Memory Pool Header Structure

The partition header structure PM_HEADER is placed at the beginning of each
available partition. Each header contains a pointer to the next available partition, except for
the last partition, which points to a null terminator. Each partition header also contains a
pointer to its PCB (Partition Memory Pool Control Block).

Field DeclarationsField DeclarationsField DeclarationsField Declarations

struct PM_HEADER_STRUCT *pm_next_available
PM_PCB *pm_partition_pool

Field SummaryField SummaryField SummaryField Summary

Field Description
*pm_next_available A pointer to the next partition in the available list.
pm_partition_pool A pointer to this partition's PCB.

Partition Memory Pool Suspension StructurePartition Memory Pool Suspension StructurePartition Memory Pool Suspension StructurePartition Memory Pool Suspension Structure

Tasks can suspend on empty and full partition memory pool conditions. During the
suspension process a PM_SUSPEND structure is built. This structure contains
information about the task and the task�s partition pool request at the time of
suspension. This suspension structure is linked to the PCB in a doubly linked, circular list
and is allocated from the suspending task�s stack. There is one suspension block for every
task suspended on the partition memory pool.

The suspension block's position on the suspend list is determined at partition pool creation.
If a FIFO suspension was selected, the suspension block is added to the end of the list.
Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks with tasks of equal or higher priority.

Field DeclaratField DeclaratField DeclaratField Declarationsionsionsions

CS_NODE pm_suspend_link
PM_PCB *pm_partiton_pool
TC_TCB *pm_suspended_task
VOID *pm_return_status

Partition Pool n
PCB

task 0
PM_SUSPEND

task 1
PM_SUSPEND

task 2
PM_SUSPEND

task n
PM_SUSPEND

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

164

Field SummaryField SummaryField SummaryField Summary

Field Description
pm_suspend_link A link node structure for linking with other

suspended blocks. It is used in a doubly linked,
circular suspension list.

*pm_partiton_pool A pointer to the partition memory pool structure.
*pm_suspended_task A pointer to the Task Control Block of the suspended

task.
*pm_return_pointer The return memory address that has been requested.
pm_return_status The completion status of the task suspended on the

partition pool.

Partition Memory FunctionsPartition Memory FunctionsPartition Memory FunctionsPartition Memory Functions

The following sections provide a brief description of the functions in the Partition Memory
Component (PM). Review of the actual source code is recommended for further
information.

PMC_Create_Partition_Pool

Creates a memory partition pool and then places it on the list of created partition pools.

STATUS PMC_Create_Partition_Pool(NU_PARTITION_POOL *pool_ptr, CHAR *name,
 VOID *start_address, UNSIGNED pool_size,
 UNSIGNED partition_size, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 165

PMC_Delete_Partition_Pool

This function deletes a memory partition pool and removes it from the list of created
partition pools. All tasks suspended on the partition pool are resumed with the appropriate
error status. Note that this function does not free any memory associated with either the pool
area or the pool control block. That is the responsibility of the
application.

STATUS PMC_Delete_Partition_Pool(NU_PARTITION_POOL *pool_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Protect
TCT_Set_Current_Protect
TCT_System_Protect
TCT_System_Unprotect
TCT_Unprotect

PMC_Allocate_Partition

This function allocates a memory partition from the specified memory partition pool. If a
memory partition is currently available, this function is completed immediately. Otherwise,
if there are no partitions currently available, suspension is possible.

STATUS PMC_Allocate_Partition(NU_PARTITION_POOL *pool_ptr,
 VOID *return_pointer, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
CSC_Priority_Place_On_List
[HIC_Make_History_Entry]
TCC_Suspend_Task
TCC_Task_Priority
[TCT_Check_Stack]
TCT_Current_Thread
TCT_System_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

166

PMC_Deallocate_Partition

This function deallocates a previously allocated partition. If there is a task waiting for a
partition, the partition is simply given to the waiting task and the waiting task is resumed.
Otherwise, the partition is returned to the partition pool.

STATUS PMC_Deallocate_Partition(VOID *partition)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_System_Protect
TCT_Unprotect

PMC_Cleanup

This function is responsible for removing a suspension block from a partition pool. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as
at suspension time) is already in effect.

VOID PMC_Cleanup(VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 167

PMCE_Create_Partition_Pool

This function performs error checking on the parameters supplied to the create partition pool
function.

STATUS PMCE_Create_Partition_Pool(NU_PARTITION_POOL *pool_ptr, CHAR *name,
 VOID *start_address, UNSIGNED pool_size,
 UNSIGNED partition_size,
 OPTION suspend_type)

FFFFunctions Calledunctions Calledunctions Calledunctions Called

PMC_Create_Partition_Pool

PMCE_Delete_Partition_Pool

This function performs error checking on the parameters supplied to the delete partition pool
function.

STATUS PMCE_Delete_Partition_Pool(NU_PARTITION_POOL *pool_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PMC_Delete_Partition_Pool

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

168

PMCE_Allocate_Partition

This function performs error checking on the parameters supplied to the allocate partition
function.

STATUS PMCE_Allocate_Partition(NU_PARTITION_POOL *pool_ptr,
 VOID **return_pointer, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PMC_Allocate_Partition
TCCE_Suspend_Error

PMCE_Deallocate_Partition

This function performs error checking on the parameters supplied to the deallocate partition
function.

STATUS PMCE_Deallocate_Partition(VOID *partition)

Functions CalledFunctions CalledFunctions CalledFunctions Called

PMC_Deallocate_Partition

PMF_Established_Partition_Pools

This function returns the current number of established partition pools. Pools
previously deleted are no longer considered established.

UNSIGNED PMF_Established_Partition_Pools(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 169

PMF_Partition_Pool_Pointers

Builds a list of pool pointers, starting at the specified location. The number of pool pointers
placed in the list is equivalent to the total number of pools or the maximum number of
pointers specified in the call.

UNSIGNED PMF_Partition_Pool_Pointers(NU_PARTITION_POOL *pointer_list,
 UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

PMF_Partition_Pool_Information

This function returns information about the specified partition pool. However, if the
supplied partition pool pointer is invalid, the function simply returns an error status.

STATUSPMF_Partition_Pool_Information(NU_PARTITION_POOL *pool_ptr, CHAR *name,
 VOID **start_address,
 UNSIGNED *pool_size,
 UNSIGNED *partition_size,
 UNSIGNED *available, UNSIGNED *allocated,
 OPTION *suspend_type,
 UNSIGNED *tasks_waiting,
 NU_TASK **first_task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_System_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

170

PMI_Initialize

This function initializes the data structures that control the operation of the Partition
Memory component. There are no partition pools initially.

VOID PMI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Dynamic Memory Component Dynamic Memory Component Dynamic Memory Component Dynamic Memory Component (DM) (DM) (DM) (DM)

The Dynamic Memory Component (DM) is responsible for processing all Nucleus PLUS
dynamic memory facilities. A Nucleus PLUS dynamic memory pool contains a user-
specified number of bytes. The memory location of the pool is determined by the
application. Tasks may suspend while waiting for enough dynamic memory to become
available. Dynamic pools are dynamically created and deleted by the user. Please see
Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information about
dynamic memory pools.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 171

Dynamic Memory FilesDynamic Memory FilesDynamic Memory FilesDynamic Memory Files

The Dynamic Memory Component (DM) consists of seven files. Each source file of the
Dynamic Memory Component is defined below.

Field Description
DM_DEFS.H This file contains constants and data structure

definitions specific to the DM
DM_EXTR.H All external interfaces to the DM are defined in this file
DMD.C Gloabal data structures for the DM are defined in this

file.
DMI.C This file contains the initialization function for the DM
DMF.C This file contains the information gathering functions

for the DM
DMC.C This file contains all of the core functions of the DM.

Functions that handle basic allocate-memory and
deallocat-memory services are defined in this file.

DMCE.C This file contains the error checking function interfaces
for the core functions defined in DMC.C.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

172

Dynamic Memory Data StructuresDynamic Memory Data StructuresDynamic Memory Data StructuresDynamic Memory Data Structures

Created Dynamic Memory ListCreated Dynamic Memory ListCreated Dynamic Memory ListCreated Dynamic Memory List

Nucleus PLUS dynamic memory pools may be created and deleted dynamically. The
Dynamic Memory Control Block (PCB) for each created dynamic memory pool is kept on a
doubly linked, circular list. Newly created dynamic memory pools are placed at the end of
the list, while deleted dynamic memory pools are completely removed from the list. The
head pointer of this list is DMD_Created_Pools_List.

Created Dynamic Memory List ProtectionCreated Dynamic Memory List ProtectionCreated Dynamic Memory List ProtectionCreated Dynamic Memory List Protection

Nucleus PLUS protects the integrity of the Created Dynamic Memory List from
competing tasks and/or HISRs. This is done by using an internal protection structure called
DMD_List_Protect. All dynamic memory creation and deletion is done under the
protection of DMD_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations
TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for the

protection.

PCB PCB PCB PCB

DMD_Created_Pools_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 173

Total Dynamic PoolsTotal Dynamic PoolsTotal Dynamic PoolsTotal Dynamic Pools

The total number of currently created Nucleus PLUS dynamic memory pools is contained in
the variable DMD_Total_Pools. The content of this variable
corresponds to the number of PCBs on the created list. Manipulation of this variable is also
done under the protection of DMD_List_Protect.

Available Memory ListAvailable Memory ListAvailable Memory ListAvailable Memory List

The Available Memory List is a doubly linked, NULL terminated, circular list, which
contains the available dynamic memory blocks. The PCB contains pointers to the starting
address of the list as well as the next available block in the list. A search pointer is also
contained in the PCB. It linearly searches for and accumulates available memory blocks in
order to fill memory requests. Allocated blocks are removed from the front of the list and
deallocated blocks are placed back in the list at the point where they came from. Each block
includes a header that links the various blocks together.

PCB DM_HEADER 0

DM_HEADER 1

DM_HEADER n

dm_start_address

dm_search_ptr

dm_memory_list

End of Pool

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

174

Dynamic Pool Control BlockDynamic Pool Control BlockDynamic Pool Control BlockDynamic Pool Control Block

The Dynamic Memory Pool Control Block DM_PCB contains the starting address of the
current memory pool and other fields necessary for processing dynamic memory pool
requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE dm_created
TC_PROTECT dm_protect
UNSIGNED dm_id
CHAR dm_name[NU_MAX_NAME]
VOID *dm_start_address
UNSIGNED dm_pool_size
UNSIGNED dm_min_allocation
UNSIGNED dm_available
struct DM_HEADER_STRUCT *dm_memory_list struct
DM_HEADER_STRUCT *dm_search_ptr
DATA_ELEMENT dm_fifo_suspend
DATA_ELEMENT dm_padding[PAD_1]
UNSIGNED dm_tasks_waiting
struct DM_SUSPEND_STRUCT *dm_suspension_list

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 175

Field SummaryField SummaryField SummaryField Summary

Field Description
dm_created This is the link node structure for dynamic memory

pools. It is linked into the created dynamic pools list,
which is a doubly linked, circular list.

dm_protect A pointer to the protection structure for the dynamic
memory pool.

dm_id This holds the internal dynamic memory pool
identification of 0x44594E41, which is equivalent to
ASCII DYNA.

dm_name This is the user-specified, 8 character name for the
dynamic memory pool.

*dm_start_address This is the starting address of the current dynamic
memory pool.

dm_pool_size Holds the size of the dynamic memory pool.
dm_min_allocation The minimum number of bytes to be allocated in a

block.
dm_available This is the total number of bytes available for use in the

current memory pool.
*dm_memory_list A list of the memory blocks in the current memory pool.
*dm_search_ptr The search pointer used for locating a dynamic memory

pool header.
dm_fifo_suspend A flag that determines whether tasks suspend in fifo or

priority order.
dm_padding This is used to align the dynamic memory pool structure

on an even boundary. In some ports this field is not
used.

dm_tasks_waiting Indicates the number of tasks that are currently
suspended on a dynamic memory pool.

*dm_suspension_list The head pointer of the dynamic memory pool
suspension list. If no tasks are suspended, this pointer is
NULL.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

176

Dynamic Memory Pool Header StructureDynamic Memory Pool Header StructureDynamic Memory Pool Header StructureDynamic Memory Pool Header Structure

The dynamic header structure DM_HEADER is placed at the beginning of each
available memory block. Each header contains pointers to both the next available memory
block and the previous available memory block. The last block�s next pointer points to a
null terminator. Each dynamic memory header also contains a pointer to its PCB.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

struct DM_HEADER_STRUCT *dm_next_memory
struct DM_HEADER_STRUCT *dm_previous_memory
DATA_ELEMENT dm_memory_free
DM_PCB *dm_memory_pool

Field SummaryField SummaryField SummaryField Summary

Field Description
*dm_next_memory A pointer to the next memory block in the available list.
*dm_previous_memory A pointer to the previous memory block in the available

list.
dm_memory_free A flag that indicates if the current memory block is free.
dm_memory_pool A pointer to the PCB, which this memory block belongs

to.

Dynamic Memory Pool Suspension StructureDynamic Memory Pool Suspension StructureDynamic Memory Pool Suspension StructureDynamic Memory Pool Suspension Structure

Tasks can suspend on empty and full dynamic memory pool conditions. During the
suspension process a DM_SUSPEND_STRUCT structure is built. This structure contains
information about the task and the task�s dynamic pool request at the time of
suspension. This suspension structure is linked onto the PCB in a doubly linked, circular list
and is allocated off of the suspending task�s stack. There is one suspension block for every
task suspended on the dynamic memory pool.

The order of the suspension block placement on the suspend list is determined at dynamic
pool creation. If a FIFO suspension was selected, the suspension block is added to the end
of the list. Otherwise, if priority suspension was selected, the suspension block is placed
after suspension blocks for tasks of equal or higher priority.

Dynamic Pool n
PCB

task 0
DM_SUSPEND

task 1
DM_SUSPEND

task 2
DM_SUSPEND

task n
DM_SUSPEND

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 177

Field DeclarationsField DeclarationsField DeclarationsField Declarations

CS_NODE dm_suspend_link
DM_PCB *dm_memory_pool
UNSIGNED dm_request_size
TC_TCB *dm_suspended_task
VOID *dm_return_pointer
STATUS dm_return_status

Field SummaryField SummaryField SummaryField Summary

Field Description
dm_suspend_link A link node structure for linking with other

suspended blocks. It is used in a doubly linked,
circular suspension list.

*dm_memory_pool A pointer to the dynamic memory pool structure.
dm_request_size Contains the size of the requested memory block.
*dm_suspended_task A pointer to the Task Control Block of the

suspended task.
*dm_return_pointer The return memory address that has been requested.
dm_return_status The completion status of the task suspended on the

dynamic pool.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

178

Dynamic Memory FunctionsDynamic Memory FunctionsDynamic Memory FunctionsDynamic Memory Functions

The following sections provide a brief description of the functions in the Dynamic Memory
Component (DM). Review of the actual source code is recommended for further
information.

DMC_Create_Memory_Pool

Creates a dynamic memory pool and then places it on the list of created dynamic memory
pools. If the list does not exist, then this pool becomes the first item in the dynamic memory
pools list.

STATUS DMC_Create_Memory_Pool(NU_MEMORY_POOL *pool_ptr, CHAR *name,
 VOID *start_address, UNSIGNED pool_size,
 UNSIGNED min_allocation, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

DMC_Delete_Memory_Pool

This function deletes a dynamic memory pool and removes it from the list of created
memory pools. All tasks suspended on the memory pool are resumed with the
appropriate error status. Note that this function does not free any memory associated with
either the pool area or the pool control block. That is the responsibility of the
application.

STATUS DMC_Delete_Memory_Pool(NU_MEMORY_POOL *pool_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Protect
TCT_Set_Current_Protect
TCT_System_Protect
TCT_System_Unprotect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 179

DMC_Allocate_Memory

This function allocates memory from the specified dynamic memory pool. If enough
dynamic memory is currently available, this function is completed immediately.
Otherwise, task suspension is possible.

STATUS DMC_Allocate_Memory(NU_MEMORY_POOL *pool_ptr, VOID **return_pointer,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
TCC_Suspend_Task
TCC_Task_Priority
[TCT_Check_Stack]
TCT_Current_Thread
TCT_Protect
TCT_Set_Suspend_Protect
TCT_System_Protect
TCT_Unprotect
TCT_Unprotect_Specific

DMC_Deallocate_Memory

This function deallocates a previously allocated dynamic memory block. The deallocated
dynamic memory block is merged with any adjacent neighbors. This insures that there are no
consecutive blocks of free memory in the pool, which makes the search easier. If there is a
task waiting for dynamic memory, a determination of whether or not the request can now be
satisfied is made after the deallocation is complete.

STATUS DMC_Deallocate_Memory(VOID *memory)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Set_Current_Protect
TCT_System_Protect
TCT_System_Unprotect
TCT_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

180

DMC_Cleanup

This function is responsible for removing a suspension block from a memory pool. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VOID DMC_Cleanup(VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List

DMCE_Create_Memory_Pool

This function performs error checking on the parameters supplied to create the dynamic
memory pool function.

STATUS DMCE_Create_Memory_Pool(NU_MEMORY_POOL *pool_ptr, CHAR *name,
 VOID *start_address, UNSIGNED pool_size,
 UNSIGNED min_allocation, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

DMC_Create_Memory_Pool

DMCE_Delete_Memory_Pool

This function performs error checking on the parameters supplied to the delete dynamic
memory pool function.

STATUS DMCE_Delete_Memory_Pool(NU_MEMORY_POOL *pool_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

DMC_Delete_Memory_Pool

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 181

DMC_Allocate_Memory

This function allocates memory from the specified dynamic memory pool. If enough
dynamic memory is currently available, this function is completed immediately.
Otherwise, task suspension is possible.

STATUS DMC_Allocate_Memory(NU_MEMORY_POOL *pool_ptr, VOID **return_pointer,
 UNSIGNED size, UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_on_list
[HIC_Make_History_Entry]
TCC_Suspend_Task
TCC_Task_Priority
[TCT_Check_Stack]
TCT_Currtne_Thread
TCT_Protect
TCT_Set_Suspend_Protect
TCT_System_Protect
TCT_Unprotect
TCT_Unprotect_Specific

DMC_Deallocate_Memory

This function deallocates a previously allocated dynamic memory block. The deallocated
dynamic memory block is merged with any adjacent neighbors. This insures that there are no
consecutive blocks of free memory in the pool, which makes the search easier. If there is a
task waiting for dynamic memory, a determination of whether or not the request can now be
satisfied is made after the deallocation is complete.

STATUS DMC_Deallocate_Memory(VOID *memory)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
TCC_Resume_Task
[TCT_Check_Stack]
TCT_Control_To_System
TCT_Set_Current_Protect
TCT_System_Protect
TCT_System_Unprotect
TCT_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

182

DMC_Cleanup

This function is responsible for removing a suspension block from a memory pool. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VOID DMC_Cleanup(VOID *information)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List

DMCE_Create_Memory_Pool

This function performs error checking on the parameters supplied to create the dynamic
memory pool function.

STATUS DMCE_Create_Memory_Pool(NU_MEMORY_POOL *pool_ptr, CHAR *name,
 VOID *start_address, UNSIGNED pool_size,
 UNSIGNED min_allocation, OPTION suspend_type)

Functions CalledFunctions CalledFunctions CalledFunctions Called

DMC_Create_Memory_Pool

DMCE_Delete_Memory_Pool

This function performs error checking on the parameters supplied to the delete dynamic
memory pool function.

STATUS DMCE_Delete_Memory_Pool(NU_MEMORY_POOL *pool_ptr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

DMC_Delete_Memory_Pool

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 183

DMCE_Allocate_Memory

This function performs error checking on the parameters supplied to the allocate memory
function.

STATUS DMCE_Allocate_Memory(NU_MEMORY_POOL *pool_ptr,
 VOID **return_pointer, UNSIGNED size,
 UNSIGNED suspend)

Functions CalledFunctions CalledFunctions CalledFunctions Called

DMC_Allocate_Memory
TCCE_Suspend_Error

DMCE_Deallocate_Memory

This function performs error checking on the parameters supplied to the deallocate memory
function.

STATUS DMCE_Deallocate_Memory(VOID *memory)

Functions CalledFunctions CalledFunctions CalledFunctions Called

DMC_Deallocate_Memory

DMF_Established_Memory_Pools

Returns the current number of established memory pools. Pools previously deleted are no
longer considered established.

UNSIGNED DMF_Established_Memory_Pools(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

184

DMF_Memory_Pool_Pointers

Builds a list of pool pointers, starting at the specified location. The number of pool pointers
placed in the list is equivalent to the total number of pools or the maximum number of
pointers specified in the call.

UNSIGNED DMF_Memory_Pool_Pointers(NU_MEMORY_POOL **pointer_list,
 UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

DMF_Memory_Pool_Information

Returns information about the specified memory pool. However, if the supplied memory
pool pointer is invalid, the function simply returns an error status.

STATUS DMF_Memory_Pool_Information(NU_MEMORY_POOL *pool_ptr, CHAR *name,
 VOID **start_address,
 UNSIGNED *pool_size,
 UNSIGNED*min_allocation,
 UNSIGNED *available,
 OPTION *suspend_type,
 UNSIGNED *tasks_waiting,
 NU_TASK **first_task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 185

DMI_Initialize

This function initializes the data structures that control the operation of the Dynamic
Memory component. There are no dynamic memory pools initially.

VOID DMI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Input/Output Driver Component (IO)Input/Output Driver Component (IO)Input/Output Driver Component (IO)Input/Output Driver Component (IO)

The Input/Output Driver Component (IO) is responsible for processing all Nucleus PLUS
input/output facilities. A Nucleus PLUS IO Driver Component provides a standard I/O
driver interface for initialization, assign, release, input, output, status and terminate requests.
This interface is implemented with a common control structure. This enables applications to
deal with a variety of peripherals in a similar, if not the same manner. Tasks may suspend
while waiting for a peripheral to become available. I/O drivers are dynamically created and
deleted by the user. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more
detailed information about input/output drivers.

Input/Output Driver FilesInput/Output Driver FilesInput/Output Driver FilesInput/Output Driver Files

The Input/Output Driver Component (IO) consists of seven files. Each source file of the
Input/Output Driver Component is defined below.

File Description
IO_DEFS.H This file contains constants and data structure definitions specific to

the IO.
IO_EXTR.H All external interfaces to the IO are defined in this file.
IOD.C Global data structures for the IO are defined in this file.
IOI.C This file contains the initialization function for the IO.
IOF.C This file contains the information gathering functions for the IO.
IOC.C This file contains all of the core functions of the IO. Functions that

handle basic input and ouput services are defined in this file.
IOCE.C This file contains the error checking function interfaces for the core

functions defined in IOC.C.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

186

Input/Output Data StructuresInput/Output Data StructuresInput/Output Data StructuresInput/Output Data Structures

Created Input/Output ListCreated Input/Output ListCreated Input/Output ListCreated Input/Output List

Nucleus PLUS input/output drivers may be created and deleted dynamically. The
Input/Output Control Block (NU_DRIVER) for each created input/output driver is kept on a
doubly linked, circular list. Newly created input/output drivers are placed at the end of the
list, while deleted input/output drivers are completely removed from the list. The head
pointer of this list is IOD_Created_Drivers_List.

Input/Output Driver Control BlockInput/Output Driver Control BlockInput/Output Driver Control BlockInput/Output Driver Control Block

The Input/Output Driver Control Block (NU_DRIVER) contains the entry function of the
current driver and other fields necessary for processing input/output driver
requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

UNSIGNED words [NU_DRIVER_SIZE]
CHAR nu_driver_name[NU_MAX_NAME]
VOID *nu_info_ptr
UNSIGNED nu_driver_id
VOID (*nu_driver_entry)(struct NU_DRIVER_STRUCT*,
 NU_DRIVER_REQUEST *)

Field SummaryField SummaryField SummaryField Summary

Field Description
words This is the link node structure for I/O drivers. It is linked

into the created I/O driver�s list, which is a doubly linked,
circular list.

nu_driver_name This is the user-specified, 8-character name for the I/O
driver.

*nu_info_ptr A pointer to the users structure.
nu_driver_id This holds the internal I/O driver identification of

0x494F4452, which is an equivalent to ASCII IODR.
(*nu_driver_entry) This is the I/0 driver�s entry function.

NU_DRIVER NU_DRIVER NU_DRIVER NU_DRIVER

IOD_Created_Drivers_List

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 187

Created Input/Output List ProtectionCreated Input/Output List ProtectionCreated Input/Output List ProtectionCreated Input/Output List Protection

Nucleus PLUS protects the integrity of the Created Input/Output List from competing tasks
and/or HISRs. This is done by using an internal protection structure called
IOD_List_Protect. All input/output creation and deletion is done under the protection of
IOD_List_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Description
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for

the protection.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

188

Total Input/Output DriversTotal Input/Output DriversTotal Input/Output DriversTotal Input/Output Drivers

The total number of currently created Nucleus PLUS input/output drivers is contained in the
variable IOD_Total_Drivers. The contents of this variable correspond to the number of
NU_DRIVERs on the created list. Manipulation of this variable is also done under the
protection of IOD_List_Protect.

Input/Output Driver Request StructureInput/Output Driver Request StructureInput/Output Driver Request StructureInput/Output Driver Request Structure

The input/output driver request structure NU_DRIVER_REQUEST is responsible for passing
necessary information to and from a created I/O driver. The type of information in the
request is specified by the nu_function field in the request structure. Of course, the
exact interpretation of this structure depends on the specific driver.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

INT nu_function
UNSIGNED nu_timeout
STATUS nu_status
UNSIGNED nu_supplemental
VOID nu_supplemental_ptr
union NU_REQUEST_INFO_UNION nu_request_info

Field SummaryField SummaryField SummaryField Summary

Field Description
nu_function This is the I/O request function code. It can have one of 7

values depending on which request is desired:
 NU_INITIALIZE 1
 NU_ASSIGN 2
 NU_RELEASE 3
 NU_INPUT 4
 NU_OUTPUT 5
 NU_STATUS 6
 NU_TERMINATE 7
nu_timeout Holds the timeout on request.
nu_status Contains the status of the request.
nu_supplemental Contains user supplied supplemental information.
*nu_supplemental_ptr A pointer to the driver specific supplemental information

[optional].
nu_request_info A union of the structures that are used for driver requests.

These requests include initialization, assign, release, input,
output, status, and terminate.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 189

Input/Output Driver Initialization RequestsInput/Output Driver Initialization RequestsInput/Output Driver Initialization RequestsInput/Output Driver Initialization Requests

I/O driver�s initialization requests are made using the initialization structure
NU_INITIALIZE_STRUCT. This structure contains information about the driver�s base
address and the driver�s interrupt vector. This request is designated with an
NU_INITIALIZE value in the nu_function field of the NU_DRIVER_REQUEST structure.

FieldFieldFieldField Declarations Declarations Declarations Declarations

VOID *nu_io_address
UNSIGNED nu_logical_units
VOID *nu_memory
INT nu_vector

Field SummaryField SummaryField SummaryField Summary

Field Description
*nu_io_address A pointer to the base I/O address of the driver.
nu_logical_units Contains the number of logical units in the driver.
*nu_memory A generic memory pointer.
nu_vector Contains the interrupt vector number of the driver.

Input/Output Driver Assignment RequestsInput/Output Driver Assignment RequestsInput/Output Driver Assignment RequestsInput/Output Driver Assignment Requests

I/O driver assignment requests are made using the NU_ASSIGN_STRUCT structure. This
request is designated with an NU_ASSIGN value in the nu_function field of the
NU_DRIVER_REQUEST structure.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

UNSIGNED nu_logical_unit
INT nu_assign_info

Field SummaryField SummaryField SummaryField Summary

Field Description
nu_logical_unit Contains the I/O driver�s logical unit number.
nu_assign_info This variable is used for additional I/O driver assign

information.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

190

Input/Output Driver Release RequestsInput/Output Driver Release RequestsInput/Output Driver Release RequestsInput/Output Driver Release Requests

I/O driver release requests are made using the NU_RELEASE_STRUCT structure. This
request is designated with an NU_RELEASE value in the nu_function field of the
NU_DRIVER_REQUEST structure.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

UNSIGNED nu_logical_unit
INT nu_release_info

Field SummaryField SummaryField SummaryField Summary

Field Description
nu_logical_unit Contains the I/O driver�s logical unit number.
nu_assign_info This variable is used for additional I/O driver release

information.

Input/Output Driver Input RequestsInput/Output Driver Input RequestsInput/Output Driver Input RequestsInput/Output Driver Input Requests

I/O driver inputs are made using the NU_INPUT_STRUCT structure. This structure contains
information about data sent to the driver for processing. This request is designated with an
NU_INPUT value in the nu_function field of the NU_DRIVER_REQUEST structure.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

UNSIGNED nu_logical_unit
UNSIGNED nu_offset
UNSIGNED nu_request_size
UNSIGNED nu_actual_size
Void *nu_buffer_ptr

Field SummaryField SummaryField SummaryField Summary

Field Description
nu_logical_unit Contains the I/O driver�s logical unit number.
nu_offset An I/O offset used as an offset from the device base I/O address

or an offset into the input buffer.
nu_request_size The requested size of the I/O driver input data.
nu_actual_size The actual size of the I/O driver input data.
*nu_buffer_ptr A pointer to the I/O driver input data buffer.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 191

Input/Output Driver Output RequestsInput/Output Driver Output RequestsInput/Output Driver Output RequestsInput/Output Driver Output Requests

I/O driver output requests are made using the NU_OUTPUT_STRUCT structure. This
structure contains information about data received from the driver. This request is designated
with an NU_OUTPUT value in the nu_function field of the NU_DRIVER_REQUEST
structure.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

UNSIGNED nu_logical_unit
UNSIGNED nu_offset
UNSIGNED nu_request_size
UNSIGNED nu_actual_size
VOID *nu_buffer_ptr

Field SummaryField SummaryField SummaryField Summary

Field Description
nu_logical_unit Contains the I/O driver�s logical unit number.
nu_offset An I/O offset used as an offset from the device base I/O

address or an offset into the output buffer.
nu_request_size The requested size of the I/O driver output data.
nu_actual_size The actual size of the I/O driver output data.
*nu_buffer_ptr A pointer to the I/O driver output buffer.

Input/Output Driver Status RequestsInput/Output Driver Status RequestsInput/Output Driver Status RequestsInput/Output Driver Status Requests

I/O driver status requests are made using the NU_STATUS_STRUCT structure. This request
is designated with an NU_STATUS value in the nu_function field of the
NU_DRIVER_REQUEST structure.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

UNSIGNED nu_logical_unit
VOID *nu_extra_status

Field SummaryField SummaryField SummaryField Summary

Field Description
nu_logical_unit Contains the I/O driver�s logical unit number.
*nu_extra_status A pointer to additional status information.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

192

Input/Output Driver Terminate RequestsInput/Output Driver Terminate RequestsInput/Output Driver Terminate RequestsInput/Output Driver Terminate Requests

I/O driver terminate requests are made using the NU_TERMINATE_STRUCT
structure. This request is designated with an NU_TERMINATE value in the nu_function field
of the NU_DRIVER_REQUEST structure.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

UNSIGNED nu_logical_unit

Field SummaryField SummaryField SummaryField Summary

Field Description
nu_logical_unit Contains the I/O driver�s logical unit number.

Input/Output Driver FunctionInput/Output Driver FunctionInput/Output Driver FunctionInput/Output Driver Functionssss
The following sections provide a brief description of the functions in the Input/Output
Driver Component (IO). Review of the actual source code is recommended for further
information.

IOC_Create_Driver

Creates an I/O driver and places it on the list of created I/O drivers. Note that this function
does not actually invoke the driver.

STATUS IOC_Create_Driver (NU_DRIVER *driver, CHAR *name,VOID *driver_entry)
 (NU_DRIVER *, NU_DRIVER_REQUEST *))

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Place_On_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 193

IOC_Delete_Driver

This function deletes an I/O driver and removes it from the list of created drivers. Note that
this function does not actually invoke the driver.

STATUS IOC_Delete_Driver(NU_DRIVER *driver)

Functions CalledFunctions CalledFunctions CalledFunctions Called

CSC_Remove_From_List
[HIC_Make_History_Entry]
[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

IOC_Request_Driver

This function sends a user request to the specified I/O driver.

STATUS IOC_Request_Driver(NU_DRIVER *driver, NU_DRIVER_REQUEST *request)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
[TCT_Check_Stack]

IOC_Resume_Driver

Resumes a task previously suspended inside an I/O driver. Typically, this function is called
from within an I/O driver.

STATUS IOC_Resume_Driver(NU_TASK *task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Resume_Task
TCT_Control_To_System
[TCT_Check_Stack]
TCT_Get_Current_Protect
TCT_Set_Current_Protect
TCT_System_Protect
TCT_System_Unprotect
TCT_Unprotect
TCT_Unprotect_Specific

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

194

IOC_Suspend_Driver

This function suspends a task inside an I/O driver. It is the responsibility of the I/O driver to
keep track of tasks waiting inside an I/O driver.

STATUS IOC_Suspend_Driver(VOID (*terminate_routine)(VOID *),
 VOID *information, UNSIGNED timeout)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[HIC_Make_History_Entry]
TCC_Suspend_Task
TCT_Current_Thread
[TCT_Check_Stack]
TCT_Get_Current_Protect
TCT_Set_Suspend_Protect
TCT_System_Protect
TCT_Unprotect_Specific

IOCE_Create_Driver

This function performs error checking on the parameters supplied to the I/O driver create
function.

STATUS IOCE_Create_Driver(NU_DRIVER *driver, CHAR *name, VOID (*driver_entry)
 (NU_DRIVER*,NU_DRIVER_REQUEST*))

Functions CalledFunctions CalledFunctions CalledFunctions Called

IOC_Create_Driver

IOCE_Delete_Driver

This function performs error checking on the parameters supplied to the I/O driver delete
function.

STATUS IOCE_Delete_Driver(NU_DRIVER *driver)

Functions CalledFunctions CalledFunctions CalledFunctions Called

IOC_Delete_Driver

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 195

IOCE_Request_Driver

This function performs error checking on the parameters supplied to the I/O driver request
function.

STATUS IOCE_Request_Driver(NU_DRIVER *driver, NU_DRIVER_REQUEST *request)

Functions CalledFunctions CalledFunctions CalledFunctions Called

IOC_Request_Driver

IOCE_Resume_Driver

This function performs error checking on the parameters supplied to the I/O driver resume
function.

STATUS IOCE_Resume_Driver(NU_TASK *task)

Functions CalledFunctions CalledFunctions CalledFunctions Called

IOC_Resume_Driver
TCCE_Validate_Resume

IOCE_Suspend_Driver

This function performs error checking on the parameters supplied to the I/O driver suspend
function.

STATUS IOCE_Suspend_Driver(VOID (*terminate_routine) (VOID*),
 VOID *information, UNSIGNED timeout)

Functions CalledFunctions CalledFunctions CalledFunctions Called

IOC_Suspend_Driver
TCCE_Suspend_Error

IOF_Established_Drivers

Returns the current number of established I/O drivers. I/O drivers previously deleted are no
longer considered established.

UNSIGNED IOF_Established_Drivers(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

196

IOF_Driver_Pointers

Builds a list of driver pointers, starting at the specified location. The number of driver
pointers placed in the list is equivalent to the total number of drivers or the maximum
number of pointers specified in the call.

UNSIGNED IOF_Driver_Pointers(NU_DRIVER **pointer_list,
 UNSIGNED maximum_pointers)

Functions CalledFunctions CalledFunctions CalledFunctions Called

[TCT_Check_Stack]
TCT_Protect
TCT_Unprotect

IOI_Initialize

This function initializes the data structures that control the operation of the I/O driver
component. There are no I/O drivers initially.

VOID IOI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 197

History Component (HI) History Component (HI) History Component (HI) History Component (HI)

The History Component (HI) is responsible for processing all Nucleus PLUS History
facilities. The Nucleus PLUS History Component maintains a circular log of various
system activities. Application tasks and HISRs can make entries into the history log. Each
entry in the history log contains information about the particular Nucleus PLUS service call
and the caller. Please see Chapter 14 of the Nucleus PLUS Reference Manual for more
detailed information about the History log.

History FilesHistory FilesHistory FilesHistory Files

The History Component (HI) consists of five files. Each source file of the History
Component is defined below.

File Description
HI_DEFS.H This file contains constants and data structure definitions

specific to the HI.
HI_EXTR.H All external interfaces to the HI are defined in this file.
HIC.C This file contains all of the core functions of the HI. Functions

that handle basic enable-history-saving and disable-history-
saving services are defined in this file.

HID.C Global data structures for the HI are defined in this file.
HII.C This file contains the initialization function for the HI.

History Data StructuresHistory Data StructuresHistory Data StructuresHistory Data Structures

History EnableHistory EnableHistory EnableHistory Enable

Nucleus PLUS History entries may be made dynamically. The History Enable flag indicates
whether or not history saving is enabled. If this value is NU_FALSE,
history saving is disabled. Otherwise, history saving is enabled and an appropriate entry will
be made in the history log as required.

Write IndexWrite IndexWrite IndexWrite Index

The index of the next entry into the Nucleus PLUS History table is contained in the variable
HID_Write_Index. The contents of this variable correspond to the location of the index
of the next available entry in the History table. Manipulation of this variable is also done
under the protection of HID_History_Protect.

Read IndexRead IndexRead IndexRead Index

The index of the oldest entry into the Nucleus PLUS History table is contained in the
variable HID_Read_Index. The contents of this variable correspond to the location of the
index of the oldest entry in the History table. Manipulation of this variable is also done
under the protection of HID_History_Protect.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

198

History Table ProtectionHistory Table ProtectionHistory Table ProtectionHistory Table Protection

Nucleus PLUS protects the integrity of the History Table from competing tasks and/or
HISRs. This is done by using an internal protection structure called
HID_History_Protect. All History enabling and disabling is done under the protection
of HID_History_Protect.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

TC_TCB *tc_tcb_pointer
UNSIGNED tc_thread_waiting

Field SummaryField SummaryField SummaryField Summary

Field Declarations
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for

the protection.

Total EntriesTotal EntriesTotal EntriesTotal Entries

The total number of entries in the Nucleus PLUS History Table is contained in the variable
HID_Entry_Count. The contents of this variable correspond to the number of valid entries
in the History table. Manipulation of this variable is also done under the protection of
HID_History_Protect.

History Table StructureHistory Table StructureHistory Table StructureHistory Table Structure

The History Table Structure HI_HISTORY_ENTRY contains the starting index of the current
history entry and other fields necessary for processing History requests.

Field DeclarationsField DeclarationsField DeclarationsField Declarations

DATA_ELEMENT hi_id
DATA_ELEMENT hi_caller
UNSIGNED hi_param1
UNSIGNED hi_param2
UNSIGNED hi_param3
UNSIGNED hi_time
VOID *hi_thread

Field SummaryField SummaryField SummaryField Summary

Field Description
hi_id This is the index in the table for History entries. It is a simple array

consisting only of HI_HISTORY_ENTRY structures.
hi_caller The entity that made the entry into the History log. This can be a task,

a HISR or the initialization process.
hi_param1 The first parameter for storing logged history information
hi_param2 The second parameter for storing logged history information.
hi_param3 The third parameter for storing logged history information.
hi_time The current system time in clock ticks.
*hi_thread A pointer to the calling thread.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 199

History FunctionsHistory FunctionsHistory FunctionsHistory Functions

The following sections provide a brief description of the functions in the History Component
(HI). Review of the actual source code is recommended for further information.

HIC_Disable_History_Saving

This function disables the history saving function.

VOID HIC_Disable_History_Saving(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Protect
TCT_Unprotect

HIC_Enable_History_Saving

This function enables the history saving function.

VOID HIC_Enable_History_Saving(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Protect
TCT_Unprotect

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

200

HIC_Make_History_Entry_Service

This function makes an application entry in the history table.

VOID HIC_Make_History_Entry_Service(UNSIGNED param1, UNSIGNED param2,
 UNSIGNED param3)

Functions CalledFunctions CalledFunctions CalledFunctions Called

HIC_Make_History_Entry

HIC_Make_History_Entry

This function makes an entry in the next available location in the history table,
(if history saving is enabled).

VOID HIC_Make_History_Entry(DATA_ELEMENT id, UNSIGNED param1,
 UNSIGNED param2, UNSIGNED param3)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCC_Current_HISR_Pointer
TCC_Current_Task_Pointer
TCT_Get_Current_Protect
TCT_Protect
TCT_Set_Current_Protect
TCT_Unprotect
TCT_Unprotect_Specific
TMT_Retrieve_Clock

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 201

HIC_Retrieve_History_Entry

This function retrieves the next oldest entry in the history table. If no more entries are
available, an error status is returned.

STATUS HIC_Retrieve_History_Entry(DATA_ELEMENT*id, UNSIGNED *param1,
 UNSIGNED *param2, UNSIGNED *param3,
 UNSIGNED *time, NU_TASK **task,
 NU_HISR **hisr)

Functions CalledFunctions CalledFunctions CalledFunctions Called

TCT_Protect
TCT_Unprotect

HII_Initialize

This function initializes the data structures that control the operation of the History
component.

VOID HII_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Error Component (ER) Error Component (ER) Error Component (ER) Error Component (ER)

The Error Component (ER) is responsible for processing all Nucleus PLUS System Errors.
The Nucleus PLUS Error Component is a common error handling routine that handles fatal
system-error conditions. System processing is transferred to this component when a fatal
error occurs. The routine then creates an appropriate ASCII error message. This serves to
inform the user about the type of error. The system is then trapped by an infinite loop.
Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information
about Error Management.

Error FilesError FilesError FilesError Files
The Error Component (ER) consists of four files. Each source file of the Error
Component is defined below.

File Description
ER_EXTR.H All external interfaces to the ER are defined in this file.
ERC.C This file contains the core function of the ER. The function that

handles the basic system error service is defined in this file.
ERD.C Global data structures for the ER are defined in this file.
ERI.C This file contains the initialization function for the ER.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

202

Error Data StructuresError Data StructuresError Data StructuresError Data Structures

Error CodesError CodesError CodesError Codes

Nucleus PLUS errors are detected through the use of error codes. When the system
determines an error condition exists, it determines the type of error through the use of an
error code. The error code value is placed in the variable ERD_Error_Code. Nucleus
PLUS error codes are listed below.

Code Constant Description
1 NU_ERROR_CREATING_TIMER_HISR An error occurred creating the

timer HISR.
2 NU_ERROR_CREATING_TIMER_TASK An error occurred creating the

timer task.
3 NU_STACK_OVERFLOW A task or HISR stack overflow

occurred.
4 NU_UNHANDLED_INTERRUPT An interrupt occurred prior to a

LISRregistration.

Error StringError StringError StringError String

Nucleus PLUS reports errors in the form of an ASCII string. This string is built and stored
in the variable ERD_Error_String. The contents of this variable
correspond to the ASCII version of the error code that was reported by the system when the
error occurred. This string is only produced if the conditional compilation flag
NU_ERROR_STRING was used to compile ERD.C, ERI.C, and ERC.C
inclusively.

Error FunctionsError FunctionsError FunctionsError Functions

The following sections provide a brief description of the functions in the Error
Component (ER). Review of the actual source code is recommended for further
information.

ERC_System_Error

This function processes system errors detected by various system components.
Typically an error of this type is considered fatal.

VOID ERC_System_Error(INT error_code)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 203

ERI_Initialize

This function initializes the data structures of the Error Management Component.

VOID ERI_Initialize(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

License Component (LI) License Component (LI) License Component (LI) License Component (LI)

The License Component (LI) is responsible for processing all Nucleus PLUS License
facilities. The Nucleus PLUS License Component is a common License handling routine
that stores and reports information about the customer license and the customer�s serial
number. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about License Management.

License FilesLicense FilesLicense FilesLicense Files

The License Component (LI) consists of two files. Each source file of the License
Component is defined below.

File Description
LIC.C This file contains the core function of the LI. The function that

handles the basic system license reporting service is defined in
this file.

LID.C Global data structures for the LI are defined in this file.

License Data StructuresLicense Data StructuresLicense Data StructuresLicense Data Structures

License StringLicense StringLicense StringLicense String

Nucleus PLUS reports Licenses in the form of an ASCII string. This string is stored in the
variable LID_License_String. The contents of this variable include customer license
information and the customer�s serial number.

License FunctionsLicense FunctionsLicense FunctionsLicense Functions

The following sections provide a brief description of the functions in the License
Component (LI). Review of the actual source code is recommended for further
information.

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

204

LIC_License_Information

This function returns a pointer to the license information string. The information string
identifies the customer and product line Nucleus PLUS is licensed for.

CHAR *LIC_License_Information(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Release Component (RL) Release Component (RL) Release Component (RL) Release Component (RL)

The Release Component (RL) is responsible for processing all Nucleus PLUS Release
facilities. The Nucleus PLUS Release Component is a routine that is dedicated to storing and
reporting release information. This information includes the current version and release
number of the Nucleus PLUS software. Please see Chapter 3 of the Nucleus PLUS Reference
Manual for more detailed information about Release Management.

Release FilesRelease FilesRelease FilesRelease Files

The Release Component (RL) consists of two files. Each source file of the Release
Component is defined below.

File Description
RLC.C This file contains the core function of the RL. The

function that handles the basic system release reporting
service is defined in this file.

RLD.C Global data structures for the RL are defined in this file.

Release Data StructuresRelease Data StructuresRelease Data StructuresRelease Data Structures

Release StringRelease StringRelease StringRelease String

Nucleus PLUS reports Releases in the form of an ASCII string. This string is stored in the
variable RLD_Release_String. This variable contains a description of the current release
of the Nucleus PLUS software.

Special StringSpecial StringSpecial StringSpecial String

Nucleus PLUS reports miscellaneous information in the form of an ASCII string. This
string is stored in the variable RLD_Special_String. This variable contains information
about the origins of the Nucleus PLUS system.

Chapter 4 Chapter 4 Chapter 4 Chapter 4 ---- Component Descriptions Component Descriptions Component Descriptions Component Descriptions

 205

Release FunctionsRelease FunctionsRelease FunctionsRelease Functions

The following sections provide a brief description of the functions in the Release
Component (RL). Review of the actual source code is recommended for further
information.

RLC_Release_Information

This function returns a pointer to the release information string. The information string
identifies the current version of Nucleus PLUS.

CHAR *RLC_Release_Information(VOID)

Functions CalledFunctions CalledFunctions CalledFunctions Called

None

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

206

 207

Appendix A � Nucleus PLUS Constants

A

Nucleus PLUS Nucleus PLUS Nucleus PLUS Nucleus PLUS
ConstantsConstantsConstantsConstants

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

208

This appendix contains all Nucleus PLUS constants referenced in Chapter 4 (Nucleus PLUS
Services) of the Reference Manual. The constants are first listed alphabetically and then by
value.

Nucleus PLUS Constants (Alphabetical)Nucleus PLUS Constants (Alphabetical)Nucleus PLUS Constants (Alphabetical)Nucleus PLUS Constants (Alphabetical)

Name Decimal Value Hex Value
NU_ALLOCATE_MEMORY_ID 47 2F
NU_ALLOCATE_PARTITION_ID 43 2B
NU_AND 2 2
NU_AND_CONSUME 3 3
NU_BROADCAST_TO_MAILBOX_ID 16 10
NU_BROADCAST_TO_PIPE_ID 30 1E
NU_BROADCAST_TO_QUEUE_ID 23 17
NU_CHANGE_PREEMPTION_ID 11 B
NU_CHANGE_PRIORITY_ID 10 A
NU_CHANGE_TIME_SLICE_ID 65 41
NU_CONTROL_SIGNALS_ID 49 31
NU_CONTROL_TIMER_ID 58 3A
NU_CREATE_DRIVER_ID 60 3C
NU_CREATE_EVENT_GROUP_ID 37 25
NU_CREATE_HISR_ID 54 36
NU_CREATE_MAILBOX_ID 12 C
NU_CREATE_MEMORY_POOL_ID 45 2D
NU_CREATE_PARTITION_POOL_ID 41 29
NU_CREATE_PIPE_ID 25 19
NU_CREATE_QUEUE_ID 18 12
NU_CREATE_SEMAPHORE_ID 32 20
NU_CREATE_TASK_ID 2 2
NU_CREATE_TIMER_ID 56 38
NU_DEALLOCATE_MEMORY_ID 48 30
NU_DEALLOCATE_PARTITION_ID 44 2C
NU_DELETE_DRIVER_ID 61 3D
NU_DELETE_EVENT_GROUP_ID 38 26
NU_DELETE_HISR_ID 55 37
NU_DELETE_MAILBOX_ID 13 D
NU_DELETE_MEMORY_POOL_ID 46 2E
NU_DELETE_PARTITION_POOL_ID 42 2A
NU_DELETE_PIPE_ID 26 1A
NU_DELETE_QUEUE_ID 19 13
NU_DELETE_SEMAPHORE_ID 33 21
NU_DELETE_TASK_ID 3 3
NU_DELETE_TIMER_ID 57 39
NU_DISABLE_INTERRUPTS [Port Specific]
NU_DISABLE_TIMER 4 4
NU_DRIVER_SUSPEND 10 A
NU_ENABLE_INTERRUPTS [Port Specific]
NU_ENABLE_TIMER 5 5
NU_END_OF_LOG -1 FFFFFFFF
NU_EVENT_SUSPEND 7 7
NU_FALSE 0 0
NU_FIFO 6 6
NU_FINISHED 11 B
NU_FIXED_SIZE 7 7

Appendix A Appendix A Appendix A Appendix A ---- Nucleus PLUS Constants Nucleus PLUS Constants Nucleus PLUS Constants Nucleus PLUS Constants

 209

NU_GROUP_DELETED -2 FFFFFFFE
NU_INVALID_DELETE -3 FFFFFFFD
NU_INVALID_DRIVER -4 FFFFFFFC
NU_INVALID_ENABLE -5 FFFFFFFB
NU_INVALID_ENTRY -6 FFFFFFFA
NU_INVALID_FUNCTION -7 FFFFFFF9
NU_INVALID_GROUP -8 FFFFFFF8
NU_INVALID_HISR -9 FFFFFFF7
NU_INVALID_MAILBOX -10 FFFFFFF6
NU_INVALID_MEMORY -11 FFFFFFF5
NU_INVALID_MESSAGE -12 FFFFFFF4
NU_INVALID_OPERATION -13 FFFFFFF3
NU_INVALID_PIPE -14 FFFFFFF2
NU_INVALID_POINTER -15 FFFFFFF1
NU_INVALID_POOL -16 FFFFFFF0
NU_INVALID_PREEMPT -17 FFFFFFEF
NU_INVALID_PRIORITY -18 FFFFFFEE
NU_INVALID_QUEUE -19 FFFFFFED
NU_INVALID_RESUME -20 FFFFFFEC
NU_INVALID_SEMAPHORE -21 FFFFFFEB
NU_INVALID_SIZE -22 FFFFFFEA
NU_INVALID_START -23 FFFFFFE9
NU_INVALID_SUSPEND -24 FFFFFFE8
NU_INVALID_TASK -25 FFFFFFE7
NU_INVALID_TIMER 3 FFFFFFE6
NU_INVALID_VECTOR -27 FFFFFFE5
NU_MAILBOX_DELETED -28 FFFFFFE4
NU_MAILBOX_EMPTY -29 FFFFFFE3
NU_MAILBOX_FULL -30 FFFFFFE2
NU_MAILBOX_RESET -31 FFFFFFE1
NU_MAILBOX_SUSPEND 3 3
NU_MEMORY_SUSPEND 9 9
NU_NO_MEMORY -32 FFFFFFE0
NU_NO_MORE_LISRS -33 FFFFFFDF
NU_NO_PARTITION -34 FFFFFFDE
NU_NO_PREEMPT 8 8
NU_NO_START 9 9
NU_NO_SUSPEND 0 0
NU_NOT_DISABLED -35 FFFFFFDD
NU_NOT_PRESENT -36 FFFFFFDC
NU_NOT_REGISTERED -37 FFFFFFDB
NU_NOT_TERMINATED -38 FFFFFFDA
NU_NULL 0 0
NU_OBTAIN_SEMAPHORE_ID 35 23
NU_OR 0 0
NU_OR_CONSUME 1 1
NU_PARTITION_SUSPEND 8 8
NU_PIPE_DELETED -39 FFFFFFD9
NU_PIPE_EMPTY -40 FFFFFFD8
NU_PIPE_FULL -41 FFFFFFD7
NU_PIPE_RESET -42 FFFFFFD6
NU_PIPE_SUSPEND 5 5
NU_POOL_DELETED -43 FFFFFFD5
NU_PREEMPT 10 A
NU_PRIORITY 11 B
NU_PURE_SUSPEND 1 1

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

210

NU_QUEUE_DELETED -44 FFFFFFD4
NU_QUEUE_EMPTY -45 FFFFFFD3
NU_QUEUE_FULL -46 FFFFFFD2
NU_QUEUE_RESET -47 FFFFFFD1
NU_QUEUE_SUSPEND 4 4
NU_READY 0 0
NU_RECEIVE_FROM_MAILBOX_ID 17 11
NU_RECEIVE_FROM_PIPE_ID 31 1F
NU_RECEIVE_FROM_QUEUE_ID 24 18
NU_RECEIVE_SIGNALS_ID 50 32
NU_REGISTER_LISR_ID 53 35
NU_REGISTER_SIGNAL_HANDLER_ID 51 33
NU_RELEASE_SEMAPHORE_ID 36 24
NU_RELINQUISH_ID 8 8
NU_REQUEST_DRIVER_ID 62 3E
NU_RESET_MAILBOX_ID 14 E
NU_RESET_PIPE_ID 27 1B
NU_RESET_QUEUE_ID 20 14
NU_RESET_SEMAPHORE_ID 34 22
NU_RESET_TASK_ID 4 4
NU_RESET_TIMER_ID 59 3B
NU_RESUME_DRIVER_ID 63 3F
NU_RESUME_TASK_ID 6 6
NU_RETRIEVE_EVENTS_ID 40 28
NU_SEMAPHORE_DELETED -48 FFFFFFD0
NU_SEMAPHORE_RESET -49 FFFFFFCF
NU_SEMAPHORE_SUSPEND 6 6
NU_SEND_SIGNALS_ID 52 34
NU_SEND_TO_FRONT_OF_QUEUE_ID 21 15
NU_SEND_TO_FRONT_OF_PIPE_ID 28 1C
NU_SEND_TO_MAILBOX_ID 15 F
NU_SEND_TO_PIPE_ID 29 1D
NU_SEND_TO_QUEUE_ID 22 16
NU_SET_EVENTS_ID 39 27
NU_SLEEP_ID 9 9
NU_SLEEP_SUSPEND 2 2
NU_START 12 C
NU_SUCCESS 0 0
NU_SUSPEND 0xFFFFFFFFUL FFFFFFFF
NU_SUSPEND_DRIVER_ID 64 40
NU_SUSPEND_TASK_ID 7 7
NU_TERMINATE_TASK_ID 5 5
NU_TERMINATED 12 C
NU_TIMEOUT -50 FFFFFFCE
NU_TRUE 1 1
NU_UNAVAILABLE -51 FFFFFFCD
NU_USER_ID 1 1
NU_VARIABLE_SIZE 13 D

Appendix A Appendix A Appendix A Appendix A ---- Nucleus PLUS Constants Nucleus PLUS Constants Nucleus PLUS Constants Nucleus PLUS Constants

 211

Nucleus PLUS Constants (Value)Nucleus PLUS Constants (Value)Nucleus PLUS Constants (Value)Nucleus PLUS Constants (Value)
Name Decimal Value Hex Value
NU_ENABLE_INTERRUPTS [Port Specific]
NU_DISABLE_INTERRUPTS [Port Specific]
NU_FALSE 0 0
NU_NO_SUSPEND 0 0
NU_NULL 0 0
NU_OR 0
0
NU_READY 0 0
NU_SUCCESS 0 0
NU_OR_CONSUME 1 1
NU_PURE_SUSPEND 1 1
NU_TRUE 1 1
NU_USER_ID 1 1
NU_AND 2 2
NU_CREATE_TASK_ID 2 2
NU_SLEEP_SUSPEND 2 2
NU_AND_CONSUME 3 3
NU_DELETE_TASK_ID 3 3
NU_MAILBOX_SUSPEND 3 3
NU_DISABLE_TIMER 4 4
NU_QUEUE_SUSPEND 4 4
NU_RESET_TASK_ID 4 4
NU_ENABLE_TIMER 5 5
NU_PIPE_SUSPEND 5 5
NU_TERMINATE_TASK_ID 5 5
NU_FIFO 6 6
NU_RESUME_TASK_ID 6 6
NU_SEMAPHORE_SUSPEND 6 6
NU_EVENT_SUSPEND 7 7
NU_FIXED_SIZE 7 7
NU_SUSPEND_TASK_ID 7 7
NU_NO_PREEMPT 8 8
NU_PARTITION_SUSPEND 8 8
NU_RELINQUISH_ID 8 8
NU_MEMORY_SUSPEND 9 9
NU_NO_START 9 9
NU_SLEEP_ID 9 9
NU_CHANGE_PRIORITY_ID 10 A
NU_DRIVER_SUSPEND 10 A
NU_PREEMPT 10 A
NU_CHANGE_PREEMPTION_ID 11 B
NU_FINISHED 11 B
NU_PRIORITY 11 B
NU_CREATE_MAILBOX_ID 12 C
NU_START 12 C
NU_TERMINATED 12 C
NU_DELETE_MAILBOX_ID 13 D
NU_VARIABLE_SIZE 13 D
NU_RESET_MAILBOX_ID 14 E
NU_SEND_TO_MAILBOX_ID 15 F
NU_BROADCAST_TO_MAILBOX_ID 16 10
NU_RECEIVE_FROM_MAILBOX_ID 17 11
NU_CREATE_QUEUE_ID 18 12

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

212

NU_DELETE_QUEUE_ID 19 13
NU_RESET_QUEUE_ID 20 14
NU_SEND_TO_FRONT_OF_QUEUE_ID 21 15
NU_SEND_TO_QUEUE_ID 22 16
NU_BROADCAST_TO_QUEUE_ID 23 17
NU_RECEIVE_FROM_QUEUE_ID 24 18
NU_CREATE_PIPE_ID 25 19
NU_DELETE_PIPE_ID 26 1A
NU_RESET_PIPE_ID 27 1B
NU_SEND_TO_FRONT_OF_PIPE_ID 28 1C
NU_SEND_TO_PIPE_ID 29 1D
NU_BROADCAST_TO_PIPE_ID 30 1E
NU_RECEIVE_FROM_PIPE_ID 31 1F
NU_CREATE_SEMAPHORE_ID 32 20
NU_DELETE_SEMAPHORE_ID 33 21
NU_RESET_SEMAPHORE_ID 34 22
NU_OBTAIN_SEMAPHORE_ID 35 23
NU_RELEASE_SEMAPHORE_ID 36 24
NU_CREATE_EVENT_GROUP_ID 37 25
NU_DELETE_EVENT_GROUP_ID 38 26
NU_SET_EVENTS_ID 39 27
NU_RETRIEVE_EVENTS_ID 40 28
NU_CREATE_PARTITION_POOL_ID 41 29
NU_DELETE_PARTITION_POOL_ID 42 2A
NU_ALLOCATE_PARTITION_ID 43 2B
NU_DEALLOCATE_PARTITION_ID 44 2C
NU_CREATE_MEMORY_POOL_ID 45 2D
NU_DELETE_MEMORY_POOL_ID 46 2E
NU_ALLOCATE_MEMORY_ID 47 2F
NU_DEALLOCATE_MEMORY_ID 48 30
NU_CONTROL_SIGNALS_ID 49 31
NU_RECEIVE_SIGNALS_ID 50 32
NU_REGISTER_SIGNAL_HANDLER_ID 51 33
NU_SEND_SIGNALS_ID 52 34
NU_REGISTER_LISR_ID 53 35
NU_CREATE_HISR_ID 54 36
NU_DELETE_HISR_ID 55 37
NU_CREATE_TIMER_ID 56 38
NU_DELETE_TIMER_ID 57 39
NU_CONTROL_TIMER_ID 58 3A
NU_RESET_TIMER_ID 59 3B
NU_CREATE_DRIVER_ID 60 3C
NU_DELETE_DRIVER_ID 61 3D
NU_REQUEST_DRIVER_ID 62 3E
NU_RESUME_DRIVER_ID 63 3F
NU_SUSPEND_DRIVER_ID 64 40
NU_CHANGE_TIME_SLICE 65 41
NU_SUSPEND 0xFFFFFFFFUL FFFFFFFF
NU_END_OF_LOG -1 FFFFFFFF
NU_GROUP_DELETED -2 FFFFFFFE
NU_INVALID_DELETE -3 FFFFFFFD
NU_INVALID_DRIVER -4 FFFFFFFC
NU_INVALID_ENABLE -5 FFFFFFFB
NU_INVALID_ENTRY -6 FFFFFFFA
NU_INVALID_FUNCTION -7 FFFFFFF9
NU_INVALID_GROUP -8 FFFFFFF8

Appendix A Appendix A Appendix A Appendix A ---- Nucleus PLUS Constants Nucleus PLUS Constants Nucleus PLUS Constants Nucleus PLUS Constants

 213

NU_INVALID_HISR -9 FFFFFFF7
NU_INVALID_MAILBOX -10 FFFFFFF6
NU_INVALID_MEMORY -11 FFFFFFF5
NU_INVALID_MESSAGE -12 FFFFFFF4
NU_INVALID_OPERATION -13 FFFFFFF3
NU_INVALID_PIPE -14 FFFFFFF2
NU_INVALID_POINTER -15 FFFFFFF1
NU_INVALID_POOL -16 FFFFFFF0
NU_INVALID_PREEMPT -17 FFFFFFEF
NU_INVALID_PRIORITY -18 FFFFFFEE
NU_INVALID_QUEUE -19 FFFFFFED
NU_INVALID_RESUME -20 FFFFFFEC
NU_INVALID_SEMAPHORE -21 FFFFFFEB
NU_INVALID_SIZE -22 FFFFFFEA
NU_INVALID_START -23 FFFFFFE9
NU_INVALID_SUSPEND -24 FFFFFFE8
NU_INVALID_TASK -25 FFFFFFE7
NU_INVALID_TIMER -26 FFFFFFE6
NU_INVALID_VECTOR -27 FFFFFFE5
NU_MAILBOX_DELETED -28 FFFFFFE4
NU_MAILBOX_EMPTY -29 FFFFFFE3
NU_MAILBOX_FULL -30 FFFFFFE2
NU_MAILBOX_RESET -31 FFFFFFE1
NU_NO_MEMORY -32 FFFFFFE0
NU_NO_MORE_LISRS -33 FFFFFFDF
NU_NO_PARTITION -34 FFFFFFDE
NU_NOT_DISABLED -35 FFFFFFDD
NU_NOT_PRESENT -36 FFFFFFDC
NU_NOT_REGISTERED -37 FFFFFFDB
NU_NOT_TERMINATED -38 FFFFFFDA
NU_PIPE_DELETED -39 FFFFFFD9
NU_PIPE_EMPTY -40 FFFFFFD8
NU_PIPE_FULL -41 FFFFFFD7
NU_PIPE_RESET -42 FFFFFFD6
NU_POOL_DELETED -43 FFFFFFD5
NU_QUEUE_DELETED -44 FFFFFFD4
NU_QUEUE_EMPTY -45 FFFFFFD3
NU_QUEUE_FULL -46 FFFFFFD2
NU_QUEUE_RESET -47 FFFFFFD1
NU_SEMAPHORE_DELETED -48 FFFFFFD0
NU_SEMAPHORE_RESET -49 FFFFFFCF
NU_TIMEOUT -50 FFFFFFCE
NU_UNAVAILABLE -51 FFFFFFCD

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

214

 215

Appendix B � Fatal System Errors

B

Fatal System Fatal System Fatal System Fatal System
ErrorsErrorsErrorsErrors

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

216

This appendix contains all Nucleus PLUS fatal system error constants. If a fatal system
error occurs, one of these constants is passed to the fatal error handling function,
ERC_System_Error.

If the system error is NU_STACK_OVERFLOW, the currently executing thread�s stack is
too small. The current thread can be identified by examination of the global variable
TCD_Current_Thread. This contains the pointer to the current thread�s control
block.

If the system error is NU_UNHANDLED_INTERRUPT, an interrupt was received that does
not have an associated LISR. The interrupt vector number that caused the system error is
stored in the global variable TCD_Unhandled_Interrupt.

Nucleus PLUS Fatal System ErrorsNucleus PLUS Fatal System ErrorsNucleus PLUS Fatal System ErrorsNucleus PLUS Fatal System Errors

Name Decimal Value Hex Value
NU_ERROR_CREATING_TIMER_HISR 1 1
NU_ERROR_CREATING_TIMER_TASK 2 2
NU_STACK_OVERFLOW 3 3
NU_UNHANDLED_INTERRUPT 4 4

 217

Appendix C � I/O Driver Structure Requests

C

I/O Driver I/O Driver I/O Driver I/O Driver
Structure Structure Structure Structure
RequestsRequestsRequestsRequests

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

218

This appendix contains all standard Nucleus PLUS I/O driver constants and request
structures. Chapters 3 and 5 of the Nucleus PLUS Reference Manual discuss usage of
I/O drivers.

Nucleus PLUS I/O Driver Constants Nucleus PLUS I/O Driver Constants Nucleus PLUS I/O Driver Constants Nucleus PLUS I/O Driver Constants

Name Decimal Value Hex Value
NU_IO_ERROR -1 FFFFFFFF
NU_INITIALIZE 1 1
NU_ASSIGN 2 2
NU_RELEASE 3 3
NU_INPUT 4 4
NU_OUTPUT 5 5
NU_STATUS 6 6
NU_TERMINATE 7 7

Nucleus PLUS I/O Driver C StructuresNucleus PLUS I/O Driver C StructuresNucleus PLUS I/O Driver C StructuresNucleus PLUS I/O Driver C Structures
/* Define I/O driver request structures. */

struct NU_INITIALIZE_STRUCT
{
 VOID *nu_io_address; /* Base IO address */
 UNSIGNED nu_logical_units; /* Number of logical units */
 VOID *nu_memory; /* Generic memory pointer */
 INT nu_vector; /* Interrupt vector number */
};

struct NU_ASSIGN_STRUCT
{
 UNSIGNED nu_logical_unit; /* Logical unit number */
 INT nu_assign_info; /* Additional assign info */
};

struct NU_RELEASE_STRUCT
{
 UNSIGNED nu_logical_unit; /* Logical unit number */
 INT nu_release_info; /* Additional release info */
};

struct NU_INPUT_STRUCT
{
 UNSIGNED nu_logical_unit; /* Logical unit number */
 UNSIGNED nu_offset; /* Offset of input */
 UNSIGNED nu_request_size; /* Requested input size */
 UNSIGNED nu_actual_size; /* Actual input size */
 VOID *nu_buffer_ptr; /* Input buffer pointer */
};

Appendix C Appendix C Appendix C Appendix C ---- I/O Driver Structure Requests I/O Driver Structure Requests I/O Driver Structure Requests I/O Driver Structure Requests

 219

struct NU_OUTPUT_STRUCT
{
 UNSIGNED nu_logical_unit; /* Logical unit number */
 UNSIGNED nu_offset; /* Offset of output */
 UNSIGNED nu_request_size; /* Requested output size */
 UNSIGNED nu_actual_size; /* Actual output size */
 VOID *nu_buffer_ptr; /* Output buffer pointer */
};
struct NU_STATUS_STRUCT
{
 UNSIGNED nu_logical_unit; /* Logical unit number */
 VOID *nu_extra_status; /* Additional status ptr */
};
struct NU_TERMINATE_STRUCT
{
 UNSIGNED nu_logical_unit; /* Logical unit number */
};
typedef struct NU_DRIVER_REQUEST_STRUCT
{
 INT nu_function; /* I/O request function */
 UNSIGNED nu_timeout; /* Timeout on request */
 STATUS nu_status; /* Status of request */
 UNSIGNED nu_supplemental; /* Supplemental information */
 VOID *nu_supplemental_ptr; /* Supplemental info pointer*/

/* Define a union of all the different types of request
 structures.*/

 union NU_REQUEST_INFO_UNION
 {
 struct NU_INITIALIZE_STRUCT nu_initialize;
 struct NU_ASSIGN_STRUCT nu_assign;
 struct NU_RELEASE_STRUCT nu_release;
 struct NU_INPUT_STRUCT nu_input;
 struct NU_OUTPUT_STRUCT nu_output;
 struct NU_STATUS_STRUCT nu_status;
 struct NU_TERMINATE_STRUCT nu_terminate;
 } nu_request_info;

} NU_DRIVER_REQUEST;

Nucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS InternalsNucleus PLUS Internals

220

	Chapter 1 - Introduction
	Purpose of Manual
	About Nucleus PLUS
	Nucleus PLUS Construction

	Chapter 2 – Implementation Conventions
	Components
	Component Composition
	Format
	Prologue
	After the Prologue
	Remainder of File

	Naming Conventions
	Component Names
	#define Names
	Structure Names
	Typedef Names
	Structure Member Names
	Global Variable Names
	Local Variable Names
	Function Names

	Indentation
	Comments

	Chapter 3 – Software Overview
	Basic Usage
	Operation Mode
	Application Initialization
	Include File

	Data Types
	Service Call Mapping
	Error Checking
	No Error Checking
	Conditional Compilation
	Library Conditional Flags
	Library Conditional Values
	Application Conditional Flags

	Environment Dependencies
	Initialization
	Thread Control
	Timer Management
	Nucleus PLUS Include File

	Version Control

	Chapter 4 – Component Descriptions
	Common Services Component (CS)
	Common Services Files
	Common Services Control Block
	Common Services Functions
	CSC_Place_On_List
	CSC_Priority_Place_On_List
	CSC_Remove_From_List

	Initialization Component (IN)
	Initialization Files
	Initialization Functions
	INC_Initialize
	INT_Initialize
	INT_Vectors_Loaded
	INT_Setup_Vector

	Thread Control Component (TC)
	Thread Control Files
	Thread Control Data Structures
	Thread Control Functions
	TCC_Create_Task
	TCC_Delete_Task
	TCC_Create_HISR
	TCC_Delete_HISR
	TCC_Reset_Task
	TCC_Terminate_Task
	TCC_Resume_Task
	TCC_Resume_Service
	TCC_Suspend_Task
	TCC_Suspend_Service
	TCC_Task_Timeout
	TCC_Task_Sleep
	TCC_Relinquish
	TCC_Time_Slice
	TCC_Current_Task_Pointer
	TCC_Current_HISR_Pointer
	TCC_Task_Shell
	TCC_Signal_Shell
	TCC_Dispatch_LISR
	TCC_Register_LISR
	TCCE_Create_Task
	TCCE_Create_HISR
	TCCE_Delete_HISR
	TCCE_Delete_Task
	TCCE_Reset_Task
	TCCE_Terminate_Task
	TCCE_Resume_Service
	TCCE_Suspend_Service
	TCCE_Relinquish
	TCCE_Task_Sleep
	TCCE_Suspend_Error
	TCCE_Activate_HISR
	TCCE_Validate_Resume
	TCF_Established_Tasks
	TCF_Established_HISRs
	TCF_Task_Pointers
	TCF_HISR_Pointers
	TCF_Task_Information
	TCF_HISR_Information
	TCI_Initialize
	TCS_Change_Priority
	TCS_Change_Preemption
	TCS_Change_Time_Slice
	TCS_Control_Signals
	TCS_Receive_Signals
	TCS_Register_Signal_Handler
	TCS_Send_Signals
	TCSE_Change_Priority
	TCSE_Change_Preemption
	TCSE_Change_Time_Slice
	TCSE_Control_Signals
	TCSE_Receive_Signals
	TCSE_Register_Signal_Handler
	TCSE_Send_Signals
	TCT_Control_Interrupts
	TCT_Local_Control_Interrupts
	TCT_Restore_Interrupts
	TCT_Build_Task_Stack
	TCT_Build_HISR_Stack
	TCT_Build_Signal_Frame
	TCT_Check_Stack
	TCT_Schedule
	TCT_Control_To_Thread
	TCT_Control_To_System
	TCT_Signal_Exit
	TCT_Current_Thread
	TCT_Set_Execute_Task
	TCT_Protect
	TCT_Unprotect
	TCT_Unprotect_Specific
	TCT_Set_Current_Protect
	TCT_Protect_Switch
	TCT_Schedule_Protected
	TCT_Interrupt_Context_Save
	TCT_Interrupt_Context_Restore
	TCT_Activate_HISR
	TCT_HISR_Shell
	TCT_Check_For_Preemption

	Timer Component (TM)
	Timer Files
	Timer Data Structures

	Active Timers List
	Timer Functions
	TMC_Init_Task_Timer
	TMC_Start_Task_Timer
	TMC_Stop_Task_Timer
	TMC_Start_Timer
	TMC_Stop_Timer
	TMC_Timer_HISR
	TMC_Timer_Expiration
	TMF_Established_Timers
	TMF_Get_Remaining_Time
	TMF_Timer_Pointers
	TMF_Timer_Information
	TMI_Initialize
	TMS_Create_Timer
	TMS_Delete_Timer
	TMS_Reset_Timer
	TMS_Control_Timer
	TMSE_Create_Timer
	TMSE_Delete_Timer
	TMSE_Reset_Timer
	TMSE_Control_Timer
	TMT_Set_Clock
	TMT_Retrieve_Clock
	TMT_Read_Timer
	TMT_Enable_Timer
	TMT_Adjust_Timer
	TMT_Disable_Timer
	TMT_Retrieve_TS_Task
	TMT_Timer_Interrupt

	Mailbox Component (MB)
	Mailbox Files
	Mailbox Data Structures
	Mailbox Functions
	MBC_Create_Mailbox
	MBC_Delete_Mailbox
	MBC_Send_To_Mailbox
	MBC_Receive_From_Mailbox
	MBC_Cleanup
	MBCE_Create_Mailbox
	MBCE_Delete_Mailbox
	MBCE_Send_To_Mailbox
	MBCE_Receive_From_Mailbox
	MBF_Established_Mailboxes
	MBF_Mailbox_Pointers
	MBF_Mailbox_Information
	MBI_Initialize
	MBS_Reset_Mailbox
	MBS_Broadcast_To_Mailbox
	MBSE_Reset_Mailbox
	MBSE_Broadcast_To_ Mailbox

	Queue Component (QU)
	Queue Files
	Queue Data Structures

	Queue Control Block
	Queue Suspension Structure
	Queue Functions
	QUC_Create_Queue
	QUC_Delete_Queue
	QUC_Send_To_Queue
	QUC_Receive_From_Queue
	QUC_Cleanup
	QUCE_Create_Queue
	QUCE_Delete_Queue
	QUCE_Send_To_Queue
	QUCE_Receive_From_Queue
	QUF_Established_Queues
	QUF_Queue_Information
	QUF_Queue_Pointers
	QUI_Initialize
	QUS_Reset_Queue
	QUS_Send_To_Front_Of_Queue
	QUS_Broadcast_To_Queue
	QUSE_Reset_Queue
	QUSE_Send_To_Front_Of_Queue
	QUSE_Broadcast_To_Queue

	Pipe Component (PI)
	Pipe Files
	Pipe Data Structures
	Pipe Functions
	PIC_Create_Pipe
	PIC_Delete_Pipe
	PIC_Send_To_Pipe
	PIC_Receive_From_Pipe
	PIC_Cleanup
	PICE_Create_Pipe
	PICE_Delete_Pipe
	PICE_Send_To_Pipe
	PICE_Receive_From_Pipe
	PIF_Established_Pipes
	PIF_Pipe_Information
	PIF_Pipe_Pointers
	PII_Initialize
	PIS_Reset_Pipe
	PIS_Send_To_Front_Of_Pipe
	PIS_Broadcast_To_Pipe
	PISE_Reset_Pipe
	PISE_Send_To_Front_Of_Pipe
	PISE_Broadcast_To_Pipe

	Semaphore Component (SM)
	Semaphore Files
	Semaphore Data Structures
	Semaphore Functions
	SMC_Create_Semaphore
	SMC_Delete_Semaphore
	SMC_Obtain_Semaphore
	SMC_Release_Semaphore
	SMC_Cleanup
	SMCE_Create_Semaphore
	SMCE_Delete_Semaphore
	SMCE_Obtain_Semaphore
	SMCE_Release_Semaphore
	SMF_Established_Semaphores
	SMF_Semaphore_Pointers
	SMF_Semaphore_Information
	SMI_Initialize
	SMS_Reset_Semaphore
	SMSE_Reset_Semaphore

	Event Group Component (EV)
	Event Group Files
	Event Group Data Structures
	Created Event Group List
	Created Event Group List Protection
	Total Event Groups
	Event Group Control Block
	Event Group Suspension Structure
	Event Group Functions
	EVC_Create_Event_Group
	EVC_Delete_Event_Group
	EVC_Set_Events
	EVC_Retrieve_Events
	EVC_Cleanup
	EVCE_Create_Event_Group
	EVCE_Delete_Event_Group
	EVCE_Set_Events
	EVCE_Retrieve_Events
	EVF_Established_Event_Groups
	EVF_Event_Group_Pointers
	EVF_Event_Group_Information
	EVI_Initialize

	Partition Memory Component (PM)
	Partition Memory Files
	Partition Memory Data Structures
	Partition Memory Functions
	PMC_Create_Partition_Pool
	PMC_Delete_Partition_Pool
	PMC_Allocate_Partition
	PMC_Deallocate_Partition
	PMC_Cleanup
	PMCE_Create_Partition_Pool
	PMCE_Delete_Partition_Pool
	PMCE_Allocate_Partition
	PMCE_Deallocate_Partition
	PMF_Established_Partition_Pools
	PMF_Partition_Pool_Pointers
	PMF_Partition_Pool_Information
	PMI_Initialize

	Dynamic Memory Component (DM)
	Dynamic Memory Files
	Dynamic Memory Data Structures
	Dynamic Memory Functions
	DMC_Create_Memory_Pool
	DMC_Delete_Memory_Pool
	DMC_Allocate_Memory
	DMC_Deallocate_Memory
	DMC_Cleanup
	DMCE_Create_Memory_Pool
	DMCE_Delete_Memory_Pool
	DMC_Allocate_Memory
	DMC_Deallocate_Memory
	DMC_Cleanup
	DMCE_Create_Memory_Pool
	DMCE_Delete_Memory_Pool
	DMCE_Allocate_Memory
	DMCE_Deallocate_Memory
	DMF_Established_Memory_Pools
	DMF_Memory_Pool_Pointers
	DMF_Memory_Pool_Information
	DMI_Initialize

	Input/Output Driver Component (IO)
	Input/Output Driver Files
	Input/Output Data Structures

	Total Input/Output Drivers
	Input/Output Driver Functions
	IOC_Create_Driver
	IOC_Delete_Driver
	IOC_Request_Driver
	IOC_Resume_Driver
	IOC_Suspend_Driver
	IOCE_Create_Driver
	IOCE_Delete_Driver
	IOCE_Request_Driver
	IOCE_Resume_Driver
	IOCE_Suspend_Driver
	IOF_Established_Drivers
	IOF_Driver_Pointers
	IOI_Initialize

	History Component (HI)
	History Files
	History Data Structures
	History Functions
	HIC_Disable_History_Saving
	HIC_Enable_History_Saving
	HIC_Make_History_Entry_Service
	HIC_Make_History_Entry
	HIC_Retrieve_History_Entry
	HII_Initialize

	Error Component (ER)
	Error Files
	Error Data Structures
	Error Functions
	ERC_System_Error
	ERI_Initialize

	License Component (LI)
	License Files
	License Data Structures
	License Functions
	LIC_License_Information

	Release Component (RL)
	Release Files
	Release Data Structures
	Release Functions
	RLC_Release_Information

	Appendix A – Nucleus PLUS Constants
	Appendix B – Fatal System Errors
	Appendix C – I/O Driver Structure Requests
	Nucleus PLUS Internals

