Nucleus PLUS

Internals

0001027-001 Rev. 102

Copyright (c) 2002
Accelerated Technology
Embedded Systems Division

of Mentor Graphics
uct!us 720 Oak Circle Dr. E.
Mobile, AL 36609

NEED in an RTOS. Royalty Free. (251) 661-5770

=

II Yo

=

Nucleus PLUS Internals

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

Preface

Related Documentation

Nucleus PLUS Reference Manual, by Accelerated Technology, describes the operation
and usage of the Nucleus PLUS kernel.

Style and Symbol Conventions

Program listings, program examples, filenames, menu items/buttons and interactive
displays are each shown in a special font.

Program listings and program examples - Couri er New
Filenames - COURI ER NEW ALL CAPS

Interactive Command Lines - Couri er New, Bol d
Menu Items/Buttons — Times New Roman Italic

Trademarks

MS-DOS is a trademark of Microsoft Corporation
UNIX is a trademark of X/Open
IBM PC is a trademark of International Business Machines, Inc.

Additional Assistance
For additional assistance, please contact us at the following:

Accelerated Technology
720 Oak Circle Drive, East
Mobile, AL 36609
800-468-6853
251-661-5770
251-661-5788 (fax)

support@acceleratedtechnology.com
http://www.acceleratedtechnology.com

Copyright (©) 2002, All Rights Reserved.
Document Part Number: 0001027-001 Rev. 102
Last Revised: May 13, 2002

iii

mailto:support@acceleratedtechnology.com
http://www.acceleratedtechnology.com/

Nucleus PLUS Internals

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

Contents

Chapter 1 - IntrodUCtioN..........ceciieeiiieeiieeiie et 1
Purpose 0f Manual............ccoouiiiiiiiiiieieieeee et e 2
ADOUt NUCIEUS PLUS ...ttt e es 2
Nucleus PLUS CONSIUCTION.........ccctieetieeieeeiieesieeeiteeeieeeteesseesseessseesseessseesssesssesssseens 2

Chapter 2 — Implementation CONVENIONSc.ceeeveeerieeerieeeieieeeneeeeneeenns 3
COMPONCILS ..ottt ettt et ettt e sit e ettt e st e e sbteesabeesbteesabeesbteesabeebteensseebeeensneenseas 4
Component COMPOSILIONccvieriieiieieeiertieteeieeteetesteesteesteeaesaesseesseeseensesasesseenseensens 5

FOTMAL ..ottt sttt e sttt e st e st e sareesaes 5
PrOIOGUE. ...ttt sttt ettt ettt ettt e s naeeneenns 6
AT the ProlOgUEcoviiiiiiiiiieeee e e 7
Remainder OF FIleooiiiiiiieiieeee ettt st s 7
NAMING CONVENTIONS ...eevvvieerieiirieeieeetieeteeeteeesseesteessseeeseeasseesseeesseessseeessseessssesssesnsees 8
COMPONENE NAMES ...eevvieiiieeiieeiiieesteeiteesteestreesteeestaeesseeestreesseeeseeesseesseesseessseessseens 8
HACTING INAMIES ...veeiiieeeiie ettt et e et e e s beestbeestbeesabeessbeesseesssaensseenssaeneas 8
SEIUCTUIE NAIMES ..c.eveeeivieeiie et eieeeieeetee et e et e et e e tee et e eteeenbeeenseeesseeenseeenseesnseesnseeas 8
TYPEACT NAMES.....ceeeiieiieiieie ettt ettt ettt e st e se e s e enbeessesseenseenneas 9
Structure Member NAMEScc.eecveieieriereeie ettt ettt saesaesseesseeseennenes 9
Global Variable NAMEScccevieriieciieieeieieeie ettt eaesseenseenneas 9
Local Variable NAMEScceecieriiiienieriteieee ettt snees 10
FUNCLION NAMES.....coviiiieiieiieiieeieetee ettt ettt et e s e se e seenseenseennesnnes 10
INAENLATION ...ttt ettt ettt ettt e e e nbessaessaesseeseenseenneennens 10
COMMMEIESetieeitieeiiieeteesteeeteeeteeebeesteeeaeeseseeesseessseeasseesnseeasseessseeasseesssaesnseessseenseenns 11

Chapter 3 — Software OVEIVIEWcccvvieeieiieeiieeeiieeriee e evee e 13
BaaSIC USAZE ...eouveeuieiiieeiieiieie ettt ettt st s e te et e naessaessae b e eseenseenaesseenneeneenneans 13
BaaSIC USAZE ...eouveeeieeiieeiieiieie ettt ettt s e tt et e esaessaesse e b e e seesesnaesneenseeneenneans 14

OPEration IMOAE.oviiiiieiiieiieeit ettt et ste s ae s s reesse e bt enseenseesaessaenseens 14
Application INItialiZatioNcceerierieriieie ettt 14
INCIUAE FAle ...ttt st ettt e eneenseenseens 14
DALA TYPCS . et eneieeiieeiie ettt ertteeite et e et e st e e bt esbeeesbeessbeeesseessbeeenbeesnsaeensaesssaeasseesssaennreens 14
Service Call MapPINgc.eeecveeeiieeiieeiieeieeeieesreesteesreestreessseessreessaesnsseesseesnseeenseesnses 15
EITOT CHECKING c..vviiiiieciee ettt sttt ete et ve et e e s ae e ssbeesnaeessbaennnee e 15
NO Er1or ChECKINGcovieiiiiiiie et 19

Conditional CompPilationcccecveerieiiieeiieeciie e eiee ettt eeteeeaeesaeesaeesbeessnee e 21

Nucleus PLUS Internals

Library Conditional F1ags.........cceeeiiiiieeiiiiiieciie ettt 22
Library Conditional ValUuesccceerviieriiiiiieiiieiieeieesee et eree e eeee e e 23
Application Conditional F1agsccceviiiiiiiniiniiiiiiieeeeeeeee e 23
Environment Dependenciesceeverieriieiireieiieiienieeie et see st nes 24
INItIALIZALIONeeieiieie ettt ettt ettt et e et e s ae st e st enbe et e eneeeneenseenrens 24
Thread CONMIOL.........c.ieiieieeieieeee ettt e st e s e naeenseenseas 24
TIMEr MANAGEMICNL........ecveeeieriieieeieeieeteeee st et eeeesesaessaesseesseeseenseensesseesseeseensens 24
Nucleus PLUS Include Fileccoooiiiiiiiiieieceeeeeeee e 24
Version CONEIOLocuiiiiiiiiiiiecieeiet ettt et ettt enseensesnaesnnenes 25
Chapter 4 — Component DeSCriptionscecveeeriveeeriieeniiieesieeesveeerevee s 27
Common Services Component (CS)......ccuvecuirierieriierieeieieesieseeeie e eeeseeesseesessesenens 28
CommOn SErVICES FileSiiiiriieiieiieieeieieeeee ettt 28
Common Services Control BIOCKccociviieriieiiiiiieieeeeeee e 28
Common Services FUNCHONSc.oecuirieriieiieiieie et 29
Initialization Component (IN)cccoeviirieririieie ettt eeeenaens 30
InitialiZation FIlEscceoieiiieiieieeieeee e 30
Initialization FUNCLIONScccviiiiieeiieiiieeie ettt e e e e esbeesnaeens 30
Thread Control Component (TC)cc.eevieieiieiiieeiie ettt s 32
Thread Control FIlesecciiiiiiieiieiiieeiee ettt ae e e staeeaee e 33
Thread Control Data StrUCTUIESeecuvieriieeiiieiie ettt e e e v 33
Thread Control FUNCHONScccviieciieiiieciieiieecie ettt e saee e e 46
Timer Component (TIM)c.eoueiierieiieie ettt sttt e e aaesseeseeseeneeas 80
TIMET FAlES..cueiiniieiieieeieeee ettt ettt ettt esbeenaesse e seeseensesnnes 80
TImMeEr Data SIUCTULESccuveieieiieei ettt ettt ettt e st seenteenseenaesseenseas 81
ACHIVE TIMEIS LAST..eeiiiiiiiiiiieie ettt sttt et e e s seesseennas 82
TIMET FUNCLIONS.etiiiieiieieeie ettt ettt st saeenee et e eneessaeseenseas 86
Mailbox Component (MB)cccueriiiiieiieieeie et 98
MAIIDOX FILESuvieiiiieiiieeiieciie ettt ettt sve et e taeeteeesaeenneeensaeenneas 98
MailboX Data SIUCLUIESecviieiieiiieeieeeieeeiee et et e et e sreesbeesbeesareessaeessseessseennas 99
MaiIDOX FUNCLIONS ...eeuvvieiiieiiiieeieeeiieeeie et este et e et seteestaeesaaeesaeessaeesaeensneeans 102
Queue Component (QU)....cueeeuieeiieiiieeiieeiieeieeeieeeteesreeesteesbeesseesseesseessseessseennns 109
QUEUE FILES ... et e e et e e e 110
QUEUE Data StIUCLUIESooviiieeeiiiie ettt et et e eeae e e et e e e eaeeeeeans 110
Queue Control BIOCKccviiiiiiiiiicieecie ettt e 111
QUEUE SUSPENSION STIUCTUIECveevveeeiesiieriieriieeeeteeeteeseesseesteeseesseesessnessnesseenseenseensenns 113
QUEUE FUNCLIONSoeoiiiiiiiciie ettt ettt ettt e tbeeaaeesabeetne e e 114
Pipe Component (PI)cceeoiiiiiiieiieieiteeee et 121
PAPE FIIES oottt et era e raene s 122
Pipe Data StrUCIUIES ...ocvieiieiieeiieiieie ettt e sseenseenseas 123
PiPE FUNCLIONS ...eiiiiieiieeiieciit ettt ettt e sab e et e e et e etaeessaeesseennneenns 126
Semaphore Component (SM)c..eeevieiieeriieiieerie e et esee e sreeaeeesereeseaeenereenenas 136
SemMAPhOTE FIlES ...ooiiiiiiiieiieeiie et s e s ae s s 137
Semaphore Data STUCLUIES.ecivierieeriieeiierieerte et e e esreesreestreeseneessaeeseneennas 138
Semaphore FUNCLIONScccviieiiiiiieeiieciie ettt et e ereesae e seae e 141
Event Group Component (EV)cccooiiiiiiiiiiiii e 147
Event Group FileS........cociiiiiieieiieieeieeese ettt as 147
Event Group Data StrUCTUIEScovuieriiiiiierieerieerieerte ettt 148
Created Event Group LiSt........ccoocveiieiienieieie ettt 148

vi

Preface

Created Event Group List Protection..........ccceecvieriierciieeiiesiie e 148
TOtal EVENE GIOUPS....cciieeiiieiieetieeree ettt eriteesiteesereeteeeseeeetaeessaeensseesssesnsaeessseenseeas 149
Event Group Control BIOCKcccuiiriiiiiiieiieciieeieeceeee ettt 149
Event Group Suspension StrUCHUIC.........c.cecverierieriieieeteeteseeieeie e seeseeesseenee e 150
Event Group FUNCHONSc.cooieiieiieie ettt 151
Partition Memory Component (PM).........cccervierieriieiieieeieeieeeie e 157
Partition Memory Files........ccoooiiiiiiiiieiicieeeee e 157
Partition Memory Data StruCtures...........ccecveeveecieeienienieieeie e see e seee e 158
Partition Memory FUNCHONScooiiiiiiieiieeieeceie et 164
Dynamic Memory Component (DIM)c.cceevuirriiieiiiieniiieeieeciee et ereeeveesveesvee s 170
Dynamic MemOTY FIleSc.ceciuiiiiiieeiie ettt st 171
Dynamic Memory Data StruCtUIEScccveeriierieeiieerieeee et ete e eee e 172
Dynamic Memory FUNCHONScccveeeiieiiieeiieciieeite et eiee e eiee e eeee e 178
Input/Output Driver Component (1O).......c.ccccvieeiieiiieniieiiierie et eee e 185
Input/Output DIIVET FIlescccviiiiieeiieciiecieeceeete ettt s 185
Input/Output Data StrUCTULESccveeiieieiieeierieeie ettt nbe e eenes 186
Total INput/OUtPut DITVETSeovvieiieiieieeiieieeie ettt ettt aesnnesnees 188
Input/Output Driver FUNCHIONSccevierieiieieeie et 192
History Component (HI).........cooruieiiiiiiiieiieiieie ettt 197
HIStOTY FIlES ..ottt 197
HiStory Data StruCtUIEScvevvieriieiieieeie ettt 197
HiStOTY FUNCHIONS ...ovvvieiiieiiiieciie sttt sttt e eaee e e eaae e 199
Error Component (ER)cooiiiiiiiiiieiiiecteceest ettt sttt e s st 201
EITOT FIL@S .ttt 201
Error Data STrUCTUIESco.veieiiiiieiieicete ettt s 202
EIrOr FUNCHONS ...ttt st s 202
License Component (LI).........ccoeciriiiiieiienierieeie ettt 203
LICENSE FILES ...ttt e 203
License Data SrUCTUIESc.ceoveriirirereriieieiene sttt s 203
License FUNCHIONSc..ovuiriiriiriiiieiieietetenc ettt s 203
Release Component (RL)c.cocuiiiiiiiiieiiesieie ettt 204
RELEASE FIlScuiiiiiiiiiiiiiicieeer ettt 204
Release Data StrUCLUIESc..eeiueeitieriiiieiie ettt 204
RE1EASE FUNCHIONS ..c..eiiiieiieiieeee ettt 205
Appendix A — Nucleus PLUS Constants...........ccceeeeveeerieeeeieesiieesnneenns 207
Appendix B — Fatal System Errorsccccoevveeciieniiniieieeieececreeine 215
Appendix C — I/O Driver Structure Requests.........ccceeeviveeciiencieenieenns 217

vii

Nucleus PLUS Internals

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

Introduction

Purpose of Manual

About Nucleus PLUS
Nucleus PLUS

Construction

Nucleus PLUS Internals

Purpose of Manual

Nucleus PLUS is delivered in source code form. Since the source code for Nucleus
PLUS is quite large, a typical user would have a difficult time making any sense out of it.
This manual is designed to help Nucleus PLUS users understand the source code.

About Nucleus PLUS

Nucleus PLUS is a real-time, preemptive, multitasking kernel designed for time-critical
embedded applications. Approximately 95% of Nucleus PLUS is written in ANSI C.
Because of this, Nucleus PLUS is extremely portable and is currently available for use
with most microprocessor families.

Nucleus PLUS is typically implemented as a C library. Real-time Nucleus PLUS
applications are linked with the Nucleus PLUS library. The resulting object may be
downloaded to the target or placed in ROM. In a typical target environment, the binary
image of the Nucleus PLUS instruction area, assuming all services are used, requires
roughly 20 Kbytes of memory.

Nucleus PLUS Construction

Accelerated Technology’s software development practices facilitate clarity,
modularity, reliability, reusability, and ease of maintenance. Nucleus PLUS is comprised
of multiple software components. Each software component has a unique purpose and a
specific external interface to other components. The composition of each Nucleus PLUS
software component is discussed in greater detail in subsequent chapters.

Implementation
Conventions

Components

Component Composition
Naming Conventions

Indentation

Comments

Nucleus PLUS Internals

Components

Accelerated Technology (ATI) uses a software component methodology. A software
component has a single, clear purpose. Software components are typically comprised of
several C and/or assembly language files. Each software component provides a well-
defined external interface. Ultilization of a component is accomplished through use of its
external interface. With few exceptions, access to global data structures within a
component is not allowed outside of the component. Because of this component
methodology, Nucleus PLUS software components are both easy to replace and easy to
re-use

Chapter 2 - Implementation Conventions

Component Composition

A software component is typically comprised of an include file for data type
definitions and constants, an include file for the component’s external interfaces, and one
or more C and/or assembly files. Component file names conform to the following
conventions:

File Meaning
XX DEFS. H Component constants and data structures are
B defined in this file.
XX EXTR H External interfaces to the component are defined in
B this file. These interfaces are defined in terms of
function prototypes.
XXD. C Static and global data structures within the

component are defined in this file. With few
exceptions, data structures of one component are
only accessed from functions within the component.

XXl . C The component initialization function is defined in
this file.

XXE. C This file contains functions that provide status
information about objects managed by the
component.

XXC. C This file contains the core functions of the
component.

XXCE. C This file contains the error-checking shell functions
for the core functions.

XXS. C Supplemental functions for the component are
defined in this file.

XXSE. C Error-checking functions for the supplemental

component functions are defined in this file.

& NOTE: xx represents the two-letter name of the component. A component does
not necessarily have every possible type of file.

Format

All software source files have the same fundamental format. The first part of the file
contains general information about the file and is called the prologue. The second part of
the files is dedicated to internal data declarations and internal function prototyping. The
remaining part of the file contains the actual functions.

Nucleus PLUS Internals

Prologue

The purpose of the prologue is to describe the contents of the file, identify ATI as the

owner of the file, and to provide information about revisions to the file.

An example of the prologue format follows:

/**

/*

/*Copyright (c) 199x by Accel erated Technol ogy

/*

/* the subject natter of this material. Al nmanufacturing

/* reproduction, use, and sales rights pertaining to this subject

/* matter are governed by the |icense agreenment. The recipient of

/* this software inplicitly accepts the terns of the |icense

/*

/*
/**

/**

/* FI LE NAME VERSI ON
/*

/* [nane of this file] n.n
/*

/* COVPONENT

/*

/* [identifies the conponent]

/*

/* DESCRI PTI ON

/*

/* [general description of this file]

/*

/* AUTHOR

/*

/* [aut hor’s nane]

/*

/* DATA STRUCTURES

/*

/* [gl obal conponent data structures defined in this file]
/*

/* FUNCTI ONS

/*

/* [functions defined in this file]
/*

[* DEPENDENCI ES

/* [other file dependenci es]

/*

/* H STORY

/*

[* NAMVE DATE REMARKS

/* [information about revising and verifying changes to this file]
/**

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 2 - Implementation Conventions

After the Prologue

The area after the prologue is reserved for constants, global data structure definitions, and
inter-component function prototypes. Of course, include files only define
component data structure types or external interfaces.

Remainder of File

The remainder of a software component file consists of C or assembly language
functions. Each function is preceded by a description block. The format of a function
description block follows:

/***/

/* FUNCTI ON */
[* */
/* [name of the function] */
/* */
/* DESCRI PTI ON */
[* */
/* [general description of function] */
[* */
/* AUTHOR */
/* */
/* [aut hor’s nane] */
[* */
/* CALLED BY */
/* [functions that call this function] */
/* CALLS */
/* */
/* [functions called by this function] */
[* */
/* | NPUTS */
[* */
/* [inputs to the function] */
/* */
/* QUTPUTS */
/* [outputs of this function] */
/* */
/* H STORY */
[* */
/* NAME DATE REMARKS */
[* */
/* [information about revising and verifying changes to this function] */
/* */

/***/

Nucleus PLUS Internals

Naming Conventions

Naming conventitons are intended to make examination of the ATI source code less
painful by incorporating the first three or four characters of the file name into global
variable and function names. Of course, all names correspond to their usage. Detailed
descriptions of the naming conventions are described in the following sub-sections.

Component Names

Component names are generally limited to two characters. The component name is used
as the first two characters of each file that makes up the component.

Example:

Dynamic Memory Management Component Name: DM
Files that comprise DM:

DM DEFS. H
DM _EXTR. H

#define Names

Defines are comprised of underscores, capital letters, and numeric characters. The
maximum length of a define is 31 characters. Additionally, the first three characters of a
define are “CC_” where “CC” is the same as the first two letters of the file name where
the define is located.

Example (for file EX_DEFS. H):
#defi ne EX_MY_CONSTANT 10

Structure Names

Structure names are comprised of underscores, capital letters, and numeric characters.
The maximum length of a structure name is 31characters. Additionally, the first three
characters of a structure name are “CC_” where “CC” is the same as the first two letters
of the file name where the structure is defined.

Example (for file EX_DEFS. H):

st ruct EX_MY_STRUCT
{
int ex_nenber _a;
i nt ex_nenber _b;
int ex_nenber _c;
b

Chapter 2 - Implementation Conventions

Typedef Names

Typedef names are comprised of underscores, capital letters, and numeric characters.
The maximum length of a typedef name is 31characters. Additionally, the first three
characters of a typedef name are “CC_~ where “CC’ is the same as the first two letters
of the file name the typedef is defined in.

Example (for file EX_DEFS. H):

typedef struct EX_MyY_STRUCT
{

int ex_menber _a;

int ex_nmenber _b;

int ex_menber _c;
} EX_MY_TYPEDEF;

Structure Member Names

Structure member names are comprised of underscores, lower-case letters, and
numeric characters. The maximum length of structure member names is 31characters.
Additionally, the first three characters of a structure member are defined as “CC ”
where “CC” is the same as the first two letters of the “CC_DEFS. H’ file that contains
the structure definition.

Example (for file EX_DEFS. H):
struct EX _MY_STRUCT

{
int ex_menber _a;
int ex_nmenber _b;
int ex_menber _c;
i

Global Variable Names

Nucleus Plus global variable names are comprised of underscores, a single upper case
character following each underscore, lower case characters, and numeric characters. The
maximum length of a global variable name is 31characters. Additionally, the first three
letters of a global variable name are defined as “CCC” where ‘“ccc” is the same as the
first three letters of the “CCC. C” file that contains the actual variable declaration.

Example (for file EXD. C):

int EXD _d obal _I nt eger;

Nucleus PLUS Internals

Local Variable Names

Local variable names (names for variables defined inside the context of a C function) are
comprised of lower-case characters and possibly underscores and/or numeric characters.
The maximum length of a local variable name is 31characters. Local variable names are
not required to take the first three characters of the file they are defined in.

Example (for file EXD. C):

/* Assune the follow ng declaration is inside a function. */
int i;

Function Names

Nucleus Plus function names are comprised of underscores, a single upper case character
following each underscore, lower case characters, and numeric characters. The
maximum length of a function name is 31characters. Additionally, the first three
characters of a function name are the same as those of the file that contains the function
definition.

Example (for file EXD. C):

voi d EXD_My_Function(unsigned int i)
{

}

Indentation

10

The basic unit of indentation is 4 spaces. Function declarations, variable declarations,
and conditional compilation constructs start at column 1. Actual instructions start at
column 4.

NOTE: the braces { and } are on separate lines. The { brace has the same
indentation as the previous line, while the } brace lines up with the previous {
brace.

Example (for file EXD. C):

voi d EXD Exanpl e_Function(int i, int b)
{

unsi gned i nt a;
char b;

/* Actual instructions start. */

i = 0;

while (i < 100)

{
/* Increnent i. */
i = i + 1;

}

Chapter 2 - Implementation Conventions

Comments

Comments are one of the most important features of the Nucleus PLUS source code.
They are used in a meaningful and plentiful manner. There are two principal types of
comments in ATI software. The first type of comment starts at the current indentation,
while the second type of comment starts at column 45.

Example:
/* This is the first type of neani ngful comrent. */
i = 10;
j++; /* This is the second type of comment. */

Nucleus PLUS Internals

A\

Accelerated Technology®
Embedded Systems Division of

nior
Ics

Gra

12

Software
Overview

Basic Usage

Data Types
Service Call Mapping
Environment Dependencies

Version Control

N

ucleus PLUS Internals

Basic Usage

Nucleus PLUS is typically implemented as a C library. Real-time Nucleus PLUS
applications are linked with the Nucleus PLUS library. The resulting object may then be
downloaded to the target or placed in ROM.

PLUS. LI B is typically the file name of the Nucleus PLUS library. This is built with the
batch file PLUS. BAT. The contents of PLUS. BAT are specific to the development tool
being used.

Operation Mode

In processor architectures that have both supervisor and user modes of operation,
Nucleus PLUS application tasks typically run in supervisor mode. This is because
application tasks make direct calls to operating system services that utilize privileged
instructions. This method reduces service call overhead and is also much easier to
implement. Of course, this method allows the tasks to access anything and everything.

Application Initialization

The user is responsible for providing its own initialization routine, which is called
Application_Initialize. This routine should create the tasks, queues, and other
system objects that are required when the system starts. If the application does not utilize
dynamic creation/deletion of system objects during run-time, all of the required system
objects may be created in Application_lnitialize. Multitasking begins
immediately after the user’s Application_lnitialize routine returns.

In some target environments, the low-level system initialization files, | NT. S, | NT. ASM
or | NT. SRC may require modification. These files initialize the system timer interrupt,
available memory, and other entities that are inherently processor or board specific.

Include File

All user code that references Nucleus PLUS services and/or data types, must include the
file NUCLEUS. H. This file contains data type definitions, constant definitions, and
function prototypes for all of the Nucleus PLUS services. This file is specific to each
port of Nucleus PLUS.

Data Types

14

Nucleus PLUS defines several standard data types in the file NUCLEUS. H. These data
types are guaranteed to remain constant in capability by assigning the appropriate target
C compiler’s basic data type. Therefore, Nucleus PLUS can perform in an identical
manner on a variety of target environments.

Chapter 3 - Software Overview

The following data types are defined by Nucleus PLUS:

Data Type Meaning

UNSI GNED This is required to be a 32-bit unsigned integer. It is usually
defined as an unsigned long C data type.

S| GNED This is required to be a 32-bit signed integer. It is usually
defined as a signed long C data type.

OPTI ON Smallest data type that is easily manipulated - usually an
unsigned char C data type.

DATA ELEMENT Same as the previous OPTI ON data type.

UNSI GNED_CHAR This data type is required to be an 8-bit unsigned character.

CHAR This data type is required to be an 8-bit character.

STATUS Equivalent to target C compiler’s signed int data type.

| NT An integer data type that corresponds to the natural word size
of the underlying architecture.

VO D Equivalent to target C compiler’s void data type.

UNSI GNED_PTR This data type is a pointer to an UNSI GNED data type.

BYTE_PTR This data type is a pointer to an UNSI GNED_CHAR data type.

Service Call Mapping

The main Nucleus PLUS include file, NUCLEUS. H, contains function prototypes that

match those defined in the Nucleus PLUS Reference Manual.

However, the NU *

functions do not really exist. For most Nucleus PLUS services, there exists a function
that really does the work and a “shell” function that checks for errors in the user’s request
before calling the real function. Depending on the error checking conditional define,
NU_NO_ERROR_CHECKI NG, the Nucleus PLUS service call is mapped, through macro
substitution, to the appropriate underlying function. This facilitates complete elimination
of error checking when it is not required.

Error Checking

If the NU_NO ERROR_CHECKI NG flag is not defined (default condition), the NU_*
service calls defined in the Nucleus PLUS Reference Manual are mapped to the
following internal functions:

Nucleus PLUS Service

Internal Function

NU Activate_ H SR

TCCE_Activate_HI SR

NU_Al | ocat e_Menory

DMCE_Al | ocat e_Menory

NU Al |l ocate_Partition

PMCE_Al | ocate_Partition

NU_Br oadcast _To_Mai | box

MBSE_Br oadcast _To_Mai | box

NU_Br oadcast _To_Pi pe

Pl SE_Broadcast _To_Pi pe

NU_Br oadcast _To_Queue

QUSE_Broadcast _To_Queue

NU_Change_Preenpti on

TCSE_Change_Preenpti on

NU_Change Priority

TCSE_Change _Priority

NU_Change_Ti me_Sli ce

TCSE_Change_Time_Sli ce

Nucleus PLUS Internals

Nucleus PLUS Service

Internal Function

NU_Check_St ack

TCT_Check_St ack

NU Control _Interrupts

TCT_Control _Interrupts

NU Control _Si gnal s

TCSE_Control _Signal s

NU_Control _Ti ner

TVSE_Control _Ti ner

NU Create_Driver

| OCE _Create_Driver

NU_Creat e_Event _G oup

EVCE Create_Event _G oup

NU _Create_H SR

TCCE Create H SR

NU_Cr eat e_Mai | box

MBCE_Cr eat e_Mai | box

NU _Creat e_Menory_Pool

DMCE_Cr eat e_Menory_Pool

NU Create_Partition_Pool

PMCE_Create_Partition_Pool

NU Creat e_Pi pe

Pl CE_Creat e_Pi pe

NU_Creat e_Queue

QUCE_Create_Queue

NU_Cr eat e_Semaphor e

SMCE_Cr eat e_Semaphor e

NU _Creat e_Task

TCCE_Creat e_Task

NU_Create_Ti nmer

TVSE_Cr eat e_Ti ner

NU_Current _H SR Poi nt er

TCF_Current _Hl SR Poi nter

NU_Current _Task_Poi nt er

TCC _Current _Task_Poi nter

NU Deal | ocat e_Menory

DMCE_Deal | ocat e_Menory

NU Deal | ocate_Partition

PMCE_Deal | ocate_Partition

NU Del ete_Dri ver

| OCE Del ete_Driver

NU _Del et e_Event _Group

EVCE_Del et e_Event _G oup

NU Del ete HI SR

TCCE Del ete HI SR

NU_Del et e_Mai | box

MBCE_Del et e_Mai | box

NU Del et e_Menory_Pool

DMCE_Del et e_Menory_Pool

NU Del ete_Partition_Pool

PMCE _Del ete_Partition_Pool

NU_Del et e_Pi pe

Pl CE_Del et e_Pi pe

NU Del et e_Queue

QUCE_Del et e_Queue

NU_Del et e_Semaphor e

SMCE Del et e_Semaphor e

NU Del et e_Task

TCCE_Del et e_Task

NU_Del et e_Ti mer

TVSE_Del et e_Ti ner

NU _Di sabl e_Hi story_Savi ng

H C Di sabl e_Hi story_Saving

NU Driver_Pointers

| OF_Driver_Pointers

NU_Enabl e_Hi st ory_Savi ng

HI C _Enabl e_Hi story_Savi ng

NU_Est abl i shed_Dri vers

| OF_Established Drivers

NU_Est abl i shed_Event _Groups

EVF_Est abl i shed_Event _Groups

NU_Est abl i shed_Hl SRs

TCF_Est abl i shed_HI SRs

NU_Est abl i shed_Mai | boxes

MBF_Est abl i shed_Mai | boxes

NU_Est abl i shed_Menory_Pool s

DVF_Est abl i shed_Menory_Pool s

NU_Est abl i shed_Partition_Pool s

PM-_Est abl i shed_Partition_Pool s

NU_Est abl i shed_Pi pes

Pl F_Est abl i shed_Pi pes

NU_Est abl i shed_Queues

QUF_Est abl i shed_Queues

NU_Est abl i shed_Senmaphor es

SMF_Est abl i shed_Semaphor es

16

Chapter 3 - Software Overview

Nucleus PLUS Service

Internal Function

NU_Est abl i shed_Tasks

TCF_Est abl i shed_Tasks

NU_Est abl i shed_Ti mers

TMF_Est abl i shed_Ti ners

NU_Event _Group_I nformation

EVF_Event _Goup_I nformation

NU Event _Group_Pointers

EVF_Event G oup_Pointers

NU_Get _Rermi ni ng_Ti e

TMF_Get _Rerai ni ng_Ti e

NU_HI SR I nfornati on

TCF_HI SR I nformation

NU _HI SR Pointers

TCF_HI SR Pointers

NU_Li cense_I nformation

LI C Li cense_l nformation

NU Local Control Interrupts

TCT_Local _Control _Interrupts

NU_Mai | box_I nf or mati on

MBF_Mai | box_| nformation

NU_Mai | box_Poi nters

MBF_Mai | box_Poi nters

NU_Make History Entry

H C_Make_H story Entry_Service

NU _Menory_Pool _I nformation

DVF_Menory_Pool _| nformation

NU_Menory_Pool Pointers

DVF_Menory_Pool _Pointers

NU_Cbt ai n_Semaphor e

SMCE_(Obt ai n_Senaphor e

NU Partition_Pool _Information

PMF_Partition_Pool _I nformation

NU Partition_Pool Pointers

PM-_Partition_Pool Pointers

NU_Pi pe_I nfornati on

Pl F_Pi pe_I nformati on

NU_Pi pe_Poi nters

Pl F_Pi pe_Poi nters

NU_Pr ot ect

TCT_Prot ect

NU_Queue_| nformati on

QUF_Queue_I nformation

NU_Queue_Poi nters

QUF_Queue_Pointers

NU_Recei ve_From Mai | box

MBCE_Recei ve_From Mai | box

NU_Recei ve_From Pi pe

Pl CE_Recei ve_From Pi pe

NU_Recei ve_From Queue

QUCE_Recei ve_From Queue

NU_Recei ve_Si gnal s

TCSE_Recei ve_Si gnal s

NU Regi ster_LI SR

TCC Regi ster_LISR

NU_Regi st er _Si gnal _Handl er

TCSE_Regi st er _Si gnal _Handl er

NU_Rel ease_I nf or mati on

RLC Rel ease_| nformation

NU_Rel ease_Semaphor e

SMCE_Rel ease_Semaphor e

NU_Rel i nqui sh

TCCE_Rel i nqui sh

NU_Request _Driver

| OCE_Request _Driver

NU_Reset _Mai | box

MBSE_Reset _Mai | box

NU_Reset _Pi pe

Pl SE_Reset _Pi pe

NU_Reset _Queue

QUSE_Reset _Queue

NU_Reset _Senaphore

SMBE_Reset _Senaphor e

NU_Reset _Task

TCCE_Reset _Task

NU_Reset _Ti ner

TVSE_Reset _Ti ner

NU Restore_Interrupts

TCT_Restore_Interrupts

NU_Resune_Dri ver

| OCE_Resune_Dri ver

NU_Resune_Task

TCCE_Resune_Servi ce

Nucleus PLUS Internals

Nucleus PLUS Service

Internal Function

NU Retrieve_C ock

TMI_Retrieve_C ock

NU Retrieve_Events

EVCE Retrieve_Events

NU Retrieve_ Hi story Entry

H C Retrieve History Entry

NU_Semaphore_| nfornmati on

SMF_Senmaphor e_I nformati on

NU_Senmaphor e_Poi nters

SMF_Senaphore_Poi nters

NU_Send_Si gnal s

TCSE_Send_Si gnal s

NU_Send_To_Front _O _Pi pe

Pl SE_Send_To_Front _Of _Pi pe

NU_Send_To_Front O _Queue

QUSE_Send_To_Front _Of _Queue

NU_Send_To_Mai | box

MBCE_Send_To_Mai | box

NU_Send_To_Pi pe

Pl CE_Send_To_Pi pe

NU_Send_To_Queue

QUCE_Send_To_Queue

NU_Set _d ock

TMTI_Set _d ock

NU_Set _Events

EVCE_Set _Events

NU_Set up_\Vect or

| NT_Set up_Vect or

NU_SI eep

TCCE_Task_Sl eep

NU_Suspend_Dri ver

| OCE_Suspend_Dri ver

NU_Suspend_Task

TCCE_Suspend_Servi ce

NU_Task_I nformati on

TCF_Task_I nformati on

NU Task_Poi nters

TCF_Task_Pointers

NU_Ter m nat e_Task

TCCE_Ter mi nat e_Task

NU_Ti mer _|I nformati on

TMF_Ti mer _|I nformati on

NU_Ti mer _Poi nters

TMF_Ti mer _Poi nters

NU_Unpr ot ect

TCT_Unpr ot ect

18

No Error Checking

Chapter 3 - Software Overview

If the NU_NO_ERROR_CHECKI NG flag is defined (usually with a -D compilation switch),
the NU_* service calls defined in the Nucleus PLUS Reference Manual are mapped to

the following internal functions:

Nucleus PLUS Service

Internal Function

NU Activate_ H SR

TCC Activate_H SR

NU_Al | ocat e_Menory

DMC_Al | ocat e_Menory

NU Al l ocate_Partition

PMC Al l ocate_Partition

NU_Br oadcast _To_Mai | box

MBS_Br oadcast _To_Mai | box

NU_Br oadcast _To_Pi pe

Pl S Broadcast_To_Pi pe

NU_Br oadcast _To_Queue

QUS Broadcast _To_Queue

NU_Change_Preenpti on

TCS_Change_Preenpti on

NU_Change Priority

TCS _Change _Priority

NU_Change_Ti nme_Slice

TCS_Change_Tinme_Slice

NU_Check_St ack

TCT_Check_St ack

NU _Control _Interrupts

TCT_Control _Interrupts

NU_Control _Si gnal s

TCS Control _Signal s

NU_Control _Ti ner

TVS_Control _Ti rer

NU Create_Driver

I OC Create_Driver

NU_Creat e_Event _G oup

EVC Create_Event _G oup

NU Create_H SR

TCC Create_HI SR

NU_Cr eat e_Mai | box

MBC_Cr eat e_Mai | box

NU_Cr eat e_Menory_Pool

DMC_Cr eat e_Menory_Pool

NU Create_Partition_Pool

PMC Create_Partition_Pool

NU_Cr eat e_Pi pe

Pl C Create_Pi pe

NU_Cr eat e_Queue

QUC_Create_Queue

NU_Cr eat e_Senmphore

SMC_Cr eat e_Senaphore

NU_Creat e_Task

TCC Create_Task

NU_Creat e_Ti ner

TVS_Create_Ti ner

NU_Current _H SR _Poi nt er

TCF_Current _H SR _Poi nter

NU_Current _Task_Poi nter

TCC _Current _Task_Poi nter

NU_Deal | ocat e_Menory

DMC Deal | ocat e_Menory

NU Deal | ocate_Partition

PMC Deal | ocate_Partition

NU Del ete_Dri ver

| OC Del ete_Driver

NU Del et e_Event _G oup

EVC Del et e_Event _G oup

NU Del et e_HI SR

TCC Del ete_HI SR

NU_Del et e_Mai | box

MBC_Del et e_Mai | box

NU_Del et e_Menory_Pool

DMC _Del et e_Menory_Pool

NU Del ete_Partiti on_Pool

PMC Del ete_Partition_Pool

NU_Del et e_Pi pe

Pl C Del et e_Pi pe

NU _Del et e_Queue

QUC Del et e_Queue

NU_Del et e_Semaphor e

SMC Del et e_Senaphor e

NU_Del et e_Task

TCC Del et e_Task

NU Del et e_Ti mer

TVS_Del et e_Ti ner

NU_Di sabl e_Hi st ory_Savi ng

H C Di sabl e_Hi story_Savi ng

NU Driver_Pointers

| OF_Driver_Pointers

NU_Enabl e_Hi st ory_Savi ng

HI C_Enabl e_Hi story_Savi ng

NU_Est abl i shed_Dri vers

| OF_Established _Drivers

NU_Est abl i shed_Event _G oups

EVF_Est abl i shed_Event _G oups

Nucleus PLUS Internals

Nucleus PLUS Service

Internal Function

NU_Est abl i shed_HI SRs

TCF_Est abl i shed_HI SRs

NU_Est abl i shed_Mai | boxes

MBF_Est abl i shed_Mai | boxes

NU_Est abl i shed_Menory_Pool s

DVF_Est abl i shed_Menory_Pool s

NU_Est abl i shed_Partition_Pool s

PM-_Est abl i shed_Partition_Pool s

NU_Est abl i shed_Pi pes

Pl F_Est abl i shed_Pi pes

NU_Est abl i shed_Queues

QUF_Est abl i shed_Queues

NU_Est abl i shed_Senmaphor es

SMF_Est abl i shed_Semaphor es

NU_Est abl i shed_Tasks

TCF_Est abl i shed_Tasks

NU_Est abl i shed_Ti mers

TMF_Est abl i shed_Ti ners

NU_Event _Group_I nformation

EVF_Event _Goup_Il nformation

NU_Event _Group_Pointers

EVF_Event G oup_Pointers

NU_Get _Renmi ni ng_Ti me

TMF_Get _Rermi ni ng_Ti ne

NU_HI SR I nformati on

TCF_HI SR I nformation

NU_HI SR _Poi nters

TCF_HI SR _Pointers

NU_Li cense_I nformati on

LI C Li cense_I nformation

NU Local _Control _Interrupts

TCT_Local _Control _Interrupts

NU_Mai | box_I nf or mati on

MBF_Mai | box_| nformation

NU_Mai | box_Poi nters

MBF_Mhai | box_Poi nters

NU_Make History Entry

H C Make_Hi story Entry_ Service

NU_Menory_Pool _I nformation

DVF_Mernory_Pool _| nformation

NU_Menory_Pool Pointers

DVF_Menory_Pool _Pointers

NU_Cbt ai n_Semaphor e

SMC_(bt ai n_Senaphor e

NU Partition_Pool _Information

PMF_Partition_Pool _I nformation

NU Partition_Pool Pointers

PM-_Partition_Pool Pointers

NU_Pi pe_I nformati on

Pl F_Pi pe_I nformati on

NU_Pi pe_Poi nters

Pl F_Pi pe_Poi nters

NU_Pr ot ect

TCT_Prot ect

NU_Queue_I nformati on

QUF_Queue_I nformation

NU_Queue_Poi nters

QUF_Queue_Pointers

NU_Recei ve_From Mai | box

MBC_Recei ve_From Mai | box

NU_Recei ve_From Pi pe

Pl C_Recei ve_From Pi pe

NU_Recei ve_From Queue

QUC _Recei ve_From Queue

NU_Recei ve_Si gnal s

TCS_Recei ve_Si gnal s

NU Regi ster_LI SR

TCC Regi ster_LISR

NU_Regi st er _Si gnal _Handl er

TCS_Regi ster _Si gnal _Handl er

NU_Rel ease_I nformati on

RLC Rel ease_|I nformation

NU_Rel ease_Semaphor e

SMC_Rel ease_Senaphor e

NU_Rel i nqui sh

TCC_Rel i nqui sh

NU_Request _Dri ver

| OC_Request _Dri ver

NU_Reset _Mai | box

MBS_Reset _Mai | box

NU_Reset _Pi pe

Pl S Reset _Pi pe

NU_Reset _Queue

QUS_Reset _Queue

NU_Reset _Senaphor e

SM5_Reset _Senaphor e

NU_Reset _Task

TCC_Reset _Task

NU_Reset _Ti ner

TVS_Reset _Ti nmer

NU_Restore_Interrupts

TCT_Restore_Interrupts

NU_Resune_Dri ver

| OC_Resune_Driver

Chapter 3 - Software Overview

Nucleus PLUS Service Internal Function
NU_Resune_Task TCC_Resune_Service

NU Retrieve_C ock TMI_Retrieve_C ock

NU Retrieve_Events EVC Retrieve_Events

NU Retrieve_ Hi story Entry H C Retrieve_ History Entry
NU_Semaphor e_| nformati on SMF_Senmaphore_| nformati on
NU_Semaphor e_Poi nters SMF_Semaphor e_Poi nters
NU_Send_Si gnal s TCS_Send_Si gnal s
NU_Send_To_Front O _Pi pe PI'S Send_To_Front O _Pi pe
NU_Send_To_Front _O _Queue QUS_Send_To_Front _O _Queue
NU_Send_To_Mai | box MBC_Send_To_Mai | box
NU_Send_To_Pi pe Pl C_Send_To_Pi pe
NU_Send_To_Queue QUC_Send_To_CQueue

NU_Set _d ock TMI_Set _C ock

NU_Set _Events EVC _Set _Events

NU_Set up_\Vect or | NT_Set up_Vect or

NU_SI eep TCC Task_Sl eep
NU_Suspend_Dri ver | OC_Suspend_Dri ver
NU_Suspend_Task TCC _Suspend_Servi ce
NU_Task_I nfornati on TCF_Task_I nformati on

NU Task_Poi nters TCF_Task_Poi nters

NU_Ter m nat e_Task TCC_Ter m nat e_Task

NU_Ti mer _| nformati on TMF_Ti mer _|I nformati on
NU_Ti mer _Poi nters TMF_Ti mer _Poi nters
NU_Unpr ot ect TCT_Unpr ot ect

Conditional Compilation

The Nucleus PLUS source code has a limited number of conditional compilation options.
There are several options available during compilation of application code. However,
most options are applicable to the creation of the Nucleus PLUS library.

21

N

ucleus PLUS Internals

Library Conditional Flags

22

Conditional compilation flags for the Nucleus PLUS library are usually specified in the
PLUS. BAT batch file. These conditional compilation flags enable various features
within the Nucleus PLUS library source. The conditional compilation options are as

follows:

Compilation Flag

Meaning

NU_ENABLE HI STORY

Enable history saving in the specified file. Note: only
files of the form **C. C are affected by this option.

NU_ENABLE_STACK_CHECK

Enable stack checking at the beginning of each
function in the specified file. Note: only files of the
form **C. C are affected by this option.

NU_ERROR STRI NG

Enable making an ASCII error string if a fatal system
error occurs. This flag is applicable to the compilation
of ERD.C, ERI.C, and ERC. C.

NU_NO_ERROR CHECKI NG

Disable error-checking shell on creation of the timer
HISR in TM . C. Not applicable to any other Nucleus
PLUS library compilation.

NU_DEBUG

Maps the application data structures defined in
NUCLEUS. H to the actual internal data structures used
in Nucleus PLUS. This option allows the user to
examine all Nucleus PLUS data structures directly. All
library files and application files should either use or
not use this option.

NU_I NLI NE

Replaces some linked-list processing with in-line code
in order to improve performance. This option is
applicable to any orall **C. C or **S. C files.

Chapter 3 - Software Overview

Library Conditional Values

In addition to the externally defined conditional compilation flags, there are several
conditional compilation values defined in NUCLEUS. H. These values are set up
specifically for each port. Changing any of these values (except the R1, R2, R3, R4
options) should be done with caution. The conditional values are defined as follows:

Compilation Value Meaning

NU_PO NTER_ACCESS This value specifies how many separate memory accesses
are required to load and store a data pointer. A value of
one allows an in-line optimization. Any value greater
than one uses a function to load/store certain data pointers
under protection from interrupts.

PAD 1 This value specifies how many bytes of padding should
be added after a single character in a structure.

PAD 2 This value specifies how many bytes of padding should
be added after two consecutive characters in a structure.

PAD 3 This value specifies how many bytes of padding should
be added after three consecutive characters in a structure.

Rl, R2, R3, R4 These values are used to place the “register” modifier in

front of frequently used variables in Nucleus PLUS. R1
is used to modify the most frequently used variable. By
defining any of these to “register” the corresponding
variable in the source code is assigned register status.

Application Conditional Flags

There are several conditional flags available when compiling application programs.
Nucleus PLUS application elements may disable error checking on parameters supplied
to Nucleus PLUS services by defining NU _NO ERROR CHECKI NG with a compiler
command line option. This results in a substantial increase in run-time performance, and
also reduces code size.

Application data structures defined in NUCLEUS. H may be mapped directly to the
internal Nucleus PLUS data structures by defining the NU_DEBUG option during
compilation. This allows the user to directly examine the internals of each Nucleus
PLUS data structure within a source-level debugging environment. If the NU_DEBUG
option is used, it is often a good idea to re-build all of the Nucleus PLUS source code
swith the same NU_DEBUG option.

23

Nucleus PLUS Internals

Environment Dependencies

Processor and development tool dependencies in Nucleus PLUS have been isolated to
four files. Three of the files (INT.?, TCT.?, and TMI. ?) are written in
assembly language. These files provide the low-level, run-time environment for the
underlying target environment. The third file (NUCLEUS. H) is included, either directly
or indirectly, by all of the files in the system. This file defines various data types and
other processor and development tool specific information.

Initialization

The |INT.[S, ASM or SRC file is responsible for providing low-level
initialization and services for accessing the processor’s interrupt vector table. This file
also contains default Interrupt Service Routine (ISR) handlers. The function
INT_Initialize is specific to a given target board. For example, if the target
processor is not able to generate an internal timer interrupt, setting up the timer
interrupt becomes board specific. This means that a modified version of | NT might be
necessary for different boards even though they share the same processor
architecture.

Thread Control

Ti

N

24

The TCT.[S, ASM or SRC file is primarily responsible for transferring control
between threads and the system. A thread is defined as either a Nucleus PLUS task or a
Nucleus PLUS HISR. This file contains all of the code necessary to perform context
switches between tasks and HISRs. Additionally, this file contains code necessary for
handling protection conflicts and task signals.

mer Management

The TMI.[S, ASM or SRC] file is primarily responsible for handling Nucleus PLUS
timer services, including the timer interrupt handler. In most ports, the timer interrupt
handler is designed for low-overhead operation when no timer has expired.

ucleus PLUS Include File

The NUCLEUS. H include file is included by all Nucleus PLUS source files - either
directly or indirectly. Application files that reference Nucleus PLUS services and/or data
types must also include NUCLEUS. H. This file defines a variety of data types, interrupt
lockout/enable values, the number of interrupt vectors, the size of system control blocks,
and other target specific information.

Chapter 3 - Software Overview

Version Control

There are several different version layers in a Nucleus PLUS system. The system version
is defined by the ASCII string RLD_Rel ease_String in the file RLD. C. This version
contains the current version of the generic C source code as well as the version of the
target specific code. For example, the release string for version 1 of the MS-
DOS/Borland target specific code with version 1.13 of the generic code would be:

“Copyright (c) 200x ATl - Nucleus PLUS - DCS Borland C Version
1.13.1”

Nucleus PLUS also has version information for each file. The version information in the
header block of each file identifies the version of that specific file. In many cases, the
version in the file header is quite different than the version of the system. Each function
in a file also contains version information in its header. The version
information specified near the bottom of each function’s header indicates what changes
were made to the function and which version of the file they apply to.

25

Nucleus PLUS Internals

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

26

Component
Descriptions

Common Service Component (CS)

Initialization Component (IN)
Thread Control Component (TC)
Timer Component (TM)

Active Timers List

Mailbox Component (MB)

Queue Component (QU)

Queue Control Block

Queue Suspension Structure

Pipe Component (Pl)

Semaphore Component (SM)

Event Group Component (EV)
Partition Memory Component (PM)
Dynamic Memory Component (DM)
Input/Output Driver Component (IO)
Total Input/Output Drivers

History Component (HI)

Error Component (ER)

License Component (LI)

Release Component (RL)

27

Nucleus PLUS Internals

This chapter describes various software components of the Nucleus PLUS system. Each
component's files, data structures, and functions are described. Nucleus PLUS is comprised
of 16 distinct components.

Common Services Component (CS)

The Common Services Component (CS) is responsible for providing other Nucleus PLUS
components with linked list facilities. Each Common Service node data
structure is included within other system data structures.

Common Services Files

The Common Services Component (CS) consists of three files. Each source file of the
Common Services Component is defined below.

File Description

CS_DEFS. H This file contains constants and data structure definitions specific
to the CS.

CS_EXTR H All external interfaces to the CS are defined in this file.

CsC. C This file contains all of the core functions of the CS. Functions
that handle basic place-on-list and remove-from-list services are
defined in this file.

Common Services Control Block

The Common Services Control Block CS_NODE contains the previous and next pointers to
link the Common Services nodes together, and other fields necessary for processing
Common Services requests.

Field Declarations

struct CS_NODE_STRUCT *Ccs_previ ous
struct CS_NODE_STRUCT *cs_next
DATA _ELEMENT cs_priority
DATA_ELEMENT cs_paddi ng[PAD_1]

28

Field Summary

Chapter 4 - Component Descriptions

Field

Description

*Cs_previous

This is a link in the current node to the previous node structure for
Common Services. It is part of the Common Services list, which
is a doubly linked, circular list.

*cs_next

This is a link in the current node to the next node structure for
Common Services. It is part of the Common Services list, which
is a doubly linked, circular list.

cs_priority

Denotes the task or HISR priority.

cs_paddi ng

This is used to align the Common Services structure on an even
boundary. In some ports this field is not used.

Common Services Functions

The following sections provide a brief description of the functions in the Common Services
Component (CS). Review of the actual source code is recommended for further information.

CSC Pl ace_On_Li st

This function places the specified node at the end of the specified doubly linked circular list.

VO D CSC Pl ace_On_Li st (CS_NCDE **head, CS_NCDE *new_node)

Functions Called

None

CSC Priority_Place_On_Li st

This function places the specified node on the list based upon its priority. The node is placed
after all other nodes on the list of equal or greater priority. Note that lower numerical values
indicate greater priority.

VO D CSC Priority_Place_On_Li st(CS_NCDE **head, CS_NCDE *new_node)

Functions Called

None

29

Nucleus PLUS Internals

CSC Renpbve_From Li st

This function removes the specified node from the specified linked list.
VO D CSC_Renove_From Li st (CS_NCDE **head, CS_NCDE *node)
Functions Called

None

Initialization Component (IN)

The Initialization Component (IN) is responsible for initializing the Nucleus PLUS system.
There are typically two parts to the initialization process. The target-dependent portion is
initialized first and then each Nucleus PLUS component is initialized. The last initialization
routine called is Application_Initialize. The user defines its contents. After
initialization is complete, control is transferred to the scheduling loop, TCT_Schedul e.
Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information
about initialization.

Initialization Files

The Initialization Component (IN) consists of three files. FEach source file of the
Initialization Component is defined below.

File Description
IN_EXTR H All external interfaces to the IN are defined in this file.
INC. C This file contains the core function of the IN. The

function that handles the basic system initialization
service is defined in this file.

INT. [S, ASM SRC] This file contains all of the target dependent functions of
the IN. A sample initialization file is also provided for
user customization purposes.

Initialization Functions

The following sections provide a brief description of the functions in the Initialization
Component (IN). Review of the actual source code is recommended for further
information.

30

Chapter 4 - Component Descriptions

INC Initialize

This function is the main initialization function of the system. All components are initialized
by this function. After system initialization is complete, the Application_Initialize
routine is called. After all initialization is complete, this function calls TCT_Schedul e to
start scheduling tasks.

VOD INC Initialize(VOD *first_avail abl e_nenory)
Functions Called

Application_lnitialize
RLC _Rel ease_| nformation
LI C Li cense_I nformation
ERI _Initialize
H _Initialize
TC _Initialize
MBI _Initialize
QU _Initialize

INT Initialize

This is an assembly language function that handles all low-level, target dependent
initialization. Once this function is complete, control is transferred to the target
independent initialization function, | NC_Initialize. Responsibilities of this function
include the following:

= Setup of necessary processor/system control registers.
= Initialization of the vector table.

= Setup of the system stack pointer.

= Setup of the timer interrupt.

= Calculation of the timer HISR stack and priority.

= Calculation of the first available memory address.

= Transfer of control to INC Initialize to initialize all of the system
components.

VO D INT_Initialize(void)
Functions Called
INC Initialize

31

Nucleus PLUS Internals

I NT_Vect ors_Loaded

This is an assembly language function, which returns the flag that indicates whether or not
all the default vectors have been loaded. If it is false, each LISR register also loads the ISR
shell into the actual vector table.

I NT | NT_Vect ors_Loaded(voi d)

Functions Called

None

| NT_Setup_Vect or

This is an assembly language function, which sets up the specified vector with the new
vector value. The previous vector value is returned to the caller.

VO D *I NT_Set up_Vector (I NT vector, VO D *new)

Functions Called

None

Thread Control Component (TC)

32

The Thread Control Component (TC) is responsible for managing the execution of
competing, real-time Nucleus PLUS tasks and High Level Interrupt Routines (HISRs). A
Nucleus Plus task is a semi-independent program segment with a dedicated purpose. Most
applications have multiple tasks. In order to control the execution process, tasks are usually
assigned a priority. Nucleus PLUS priorities range from 0 to 255, where 0 is the highest
priority and 255 is the lowest priority. Higher priority tasks are executed before lower
priority tasks. Additionally, a lower priority task may be preempted when a higher priority
task becomes ready, unless preemption has been disabled. Tasks are always in one of five
states: executing, ready, suspended, terminated or finished.

A Nucleus PLUS HISR is a scheduled piece of an ISR that is allowed to interact with
Nucleus PLUS services. HISRs have priorities ranging from 0 to 2, where 0 is the highest
priority. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about the Thread Control Component.

Chapter 4 - Component Descriptions

Thread Control Files

The Thread Control Component (TC) consists of nine files. Each source file of the Thread
Control Component is defined below.

File Description

TC DEFS. H This file contains constants and data structure definitions specific
to the TC.

TC_EXTR H All external interfaces to the TC are defined in this file.

TCD. C Global data structures for the TC are defined in this file.

TCl . C This file contains the initialization function for the TC.

TCF. C This file contains the information gathering functions for the TC.

TCC. C This file contains all of the core functions of the TC. Functions

that handle basic create-task and delete-task services are defined
in this file.

TCS.C This file contains supplemental functions of the TC. Functions
contained in this file are typically used less frequently than the
core functions.

TCCE. C This file contains the error checking function interfaces for the
core functions defined in TCC. C.
TCSE. C This file contains the error checking function interfaces for the

supplemental functions defined in TCS. C.
TCT. [S, ASM SRC] | This file contains all of the target dependent functions of the TC.

Thread Control Data Structures

Created Tasks List

Nucleus PLUS Tasks may be created and deleted dynamically. The Thread Control Block
(TCB) for each created task is kept on a doubly linked, circular list. Newly created tasks are
placed at the end of the list, while deleted tasks are completely removed from the list. The
head pointer of this list is TCD_Cr eat ed_Tasks_Li st.

TCD_Created_Tasks_List

TCB TCB TCB o TCB

33

Nucleus PLUS Internals

Total Tasks

The total number of currently created Nucleus PLUS tasks is contained in the variable
TCD Tot al _Tasks. The contents of this variable correspond to the number of TCBs on the
created list. Manipulation of this wvariable is also done under the
protection of TCD Li st _Protect.

Created Task List Protection

Nucleus PLUS protects the integrity of the Created Tasks List from competing tasks and/or
HISRs. This is done by using an internal protection structure called TCD_Li st _Prot ect .
All task creation and deletion is done under the protection of TCD_Li st _Pr ot ect .

Field Declarations

TC TCB *tc_tcb_pointer
UNSI GNED tc_thread_waiting
Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting
for the protection.

34

Chapter 4 - Component Descriptions

Priority List

TCD Priority_List isan array of TCB pointers. Each element of the array is the head
pointer of the list of tasks ready for execution at that priority. If the priority is NULL, there
are no tasks ready for execution at that priority. The array is indexed by priority.

TCD_Priority List

. | TCB . TCB |, | TCcB . | TCB
’ K il
1 . TcB |, TCB
I@
2 .| TcB TCB .| TCcB
[t I
255 B] TCB

Priority Groups

TCD Priority_Groups is a 32-bit unsigned integer that is used as a bit map. Each bit
corresponds to an 8-priority group. For example, if bit 0 is set, at least one task of priority 0
through 8 is ready for execution.

TCD_Priority_Groups

Group 0-7 Group 8-15 Group 16 -23 Group 248-255

Bit 0 Bit 1 Bit 2 Bit 31

35

N

ucleus PLUS Internals

Sub-Priority Groups

Nucleus PLUS uses sub-priorities to determine the exact priority represented in the bit map.
TCD _Sub_Priority_Goups is an array of sub-priority groups. In this array, index 0
corresponds to priorities 0 through 8. Bit 0 of this element represents priority 0, while bit 7
represents priority 7.

TCD_Sub_Priority Groups

Priority 0-7 Priority 8-15 Priority 16 -23 Priority 248-255

Group 0 Group 1 Group 2 Group 31

Lowest Bit Set

TCD Lowest _Set_Bit is nothing more than a standard look-up table. The table is indexed
by values ranging from 1 to 255. The value at any position in the table
contains the lowest set bit for that value. This is used to determine the highest priority task
represented in the previously defined bit maps. For example, the lowest bit set for the value
of 7 is contained in index 7 of the TCD Lowest_Set Bit array. In the table below, the
value of 7 is shown to have bit 0 set, which is correct.

TCD_Lowest Set Bit

0 1 2 3 4 5 6 7 255
0 0 1 0 2 0 1 0 0
not used

Execute Task

36

Nucleus PLUS maintains a pointer to the task to execute. This pointer is called
TCD Execute_Task. Note that TCD Execute_Task does not necessarily point to the
currently executing task. There are several points in the system where this is true. Two
common situations arise during task preemption and during task protection conflicts.

Chapter 4 - Component Descriptions

Highest Priority

The Nucleus PLUS variable TCD Hi ghest _Priority contains the highest task priority
ready for execution. Note that this does not necessarily represent the priority of the currently
executing task. This is true if the currently executing task has preemption disabled. If no
tasks are executing, this variable is set to the maximum priority.

Created HISRs List

TCD Created_H SRs_Li st is the head pointer of the list of created High-Level Interrupt
Service Routines (HISR). If this pointer is NU _NULL, there are no HISRs currently
created.

TCD_Created_HISRs_List

HCB HCB HCB N HCB

Total HISRs

The total number of currently created Nucleus PLUS HISRs is contained in the variable
TCD Total _H SRs. The contents of this variable correspond to the number of HCBs on
the created list. Manipulation of this variable 1is also done wunder the
protection of TCD _HI SR _Pr ot ect .

Active HISR Heads

Nucleus PLUS keeps an array of active HISR list head pointers. This list is called
TCD_Active_H SR_Heads. There are three HISR priorities available. The HISR priority
is an index into this table. Priority/index O represents the highest priority and priority/index
2 represents the lowest priority.

37

Nucleus PLUS Internals

Active HISR Tails

Nucleus PLUS keeps an array of active HISR list tail pointers. There are three HISR
priorities available. The HISR priority is an index into this table. Priority/index 0 represents
the highest priority and priority/index 2 represents the lowest priority.

TCD_Active HISR Heads TCD_Active HISR Tails
Pri0 » HCB » HCB » HCB < Pri0
Pril » HCB »> HCB < Pril
Pri2 » HCB » HCB » HCB [* Pri2

Execute HISR

TCD_Execut e_Hl SR contains a pointer to the highest priority HISR to execute. If this
pointer is NU_NULL, no HISRs are currently activated. Note that the current thread pointer
is not always equal to this pointer.

Current Thread

The control block of the currently executing thread is stored in the variable
TCD Current_Thread. Therefore, this variable points at either a TC TCB or a TC_HCB
structure. Except for initialization, this variable is set and cleared in the target dependent
portion of this component.

38

Chapter 4 - Component Descriptions

Registered LISRs

Nucleus PLUS maintains a list, called TCD_Regi st er ed_LI SRs, that specifies whether or
not a LISR is registered for a given interrupt vector. Values in the list that are indexed by
non-zero vectors can be used as an index into the list of LISR pointers. The actual registered
LISR can be found by referencing the LISR pointer list at the specified index.

LISR LISR LISR LISR LISR

LISR Pointers

TCD_LI SR _Poi nters is a list of LISR pointers that indicate the LISR function to call
when the interrupt occurs. If the entry is NULL, there is no specified LISR function to call,
and that entry is available for use.

LISR LISR LISR LISR

. . . NULL .
Function Function Function Function

Interrupt Count

The number of Interrupt Service Routines (ISRs) currently in progress is contained in the
variable TCD I nterrupt_Count. If the contents of this variable are zero, then no
interrupts are in progress. If the contents are greater than 1, nested interrupts are in progress.

Stack Switched

TCD_St ack_Swi t ched is a flag that indicates if the system stack was switched to after the
thread’s context was saved. Some ports do not use this variable.

39

Nucleus PLUS Internals

System Protect

Nucleus PLUS protects the integrity of the system structures from competing tasks
and/or HISRs. This is done by wusing an internal protection structure called
TCD System Protect. All system creation and deletion is done wunder the
protection of TCD_Syst em Prot ect.

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_t hread_wai ting

Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.

tc_thread_waiting | A flagindicating that one or more threads are waiting for
the protection.

System Stack

TCD_System St ack contains the system stack base pointer. When the system is idle or in
interrupt processing, the system stack is in use. This variable is usually set up during target
dependent initialization.

40

Chapter 4 - Component Descriptions

LISR Protect

Nucleus PLUS protects the integrity of LISRs from competing threads and/or HISRs. This
is done by using an internal protection structure called TCD LI SR Protect. All LISR
creation and deletion is done under the protection of TCD LI SR _Pr ot ect .

Field Declarations

TC TCB *tc_tcb_pointer
UNSI GNED tc_thread_waiting
Field Summary
Field Descripton
tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting
for the protection.

HISR Protect

Nucleus PLUS protects the integrity of HISRs from competing threads and/or HISRs. This
is done by using an internal protection structure called TCD_H SR Protect. All HISR
creation and deletion is done under the protection of TCD_H SR Pr ot ect .

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting
Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.

tc_thread_waiting | A flagindicating that one or more threads are waiting for
the protection.

Interrupt Level
TCD I nterrupt _Level is a variable that contains the enabled interrupt posture of the
system. In ports, this variable is a Boolean.

Unhandled Interrupts

Nucleus PLUS maintains a variable that contains the last unhandled interrupt vector number
in system error conditions. This variable is TCD_Unhandl ed_|I nt err upt s.

41

N

ucleus PLUS Internals

Task Control Block

The Task Control Block TC TCB

necessary for processing task control requests.

Field Declarations

42

CS_NODE

UNSI GNED
CHAR
DATA_ELEMENT
DATA_ELEMENT
DATA_ELEMENT
DATA_ELEMENT
UNSI GNED

UNSI GNED

va D

va D

va D

UNSI GNED

UNSI GNED
struct TC_PROTECT_STRUCT
va D

UNSI GNED
struct TC TCB_STRUCT
struct TC TCB_STRUCT
UNSI GNED
TC_TCB_STRUCT
DATA_ELEMENT
DATA_ELEMENT
DATA_ELEMENT
DATA_ELEMENT
DATA_ELEMENT
va D

UNSI GNED

va D

va D

va D

struct TC_PROTECT_STRUCT
I NT

TM.TCB

UNSI GNED

UNSI GNED

va D

UNSI GNED

UNSI GNED

UNSI GNED

UNSI GNED

tc_created

tc_id

t c_nanme[NU_MAX_NAME]
tc_status

t c_del ayed_suspend
tc_priority
tc_preenption

t c_schedul ed
tc_cur_tinme_slice
*tc_stack_start
*tc_stack_end
*tc_stack_pointer
tc_stack_size

t c_stack_m ni mum
*tc_current _protect
*tc_saved_stack_ptr
tc_tine_slice
*tc_ready_previous
*tc_ready_next
tc_priority_group
**tc_priority_head
*tc_sub_priority_ptr
tc_sub_priority
tc_saved_status
tc_signal _active

t c_paddi ng[PAD_3]
(*tc_entry) (UNSI GNED, VA D *)
tc_argc

*tc_argv

(*tc_cl eanup) (VA D *)
*tc_cleanup_info

*t c_suspend_pr ot ect
tc_tiner_active
tmtiner_contro
tc_signals

t c_enabl ed_si gnal s
(*tc_signal _handl er) (UNSI GNED)
tc_systemreserved_1
tc_systemreserved_2
tc_systemreserved_3
tc_app_reserved_1

contains the task’s priority and other

fields

Field Summary

Chapter 4 - Component Descriptions

Field

Description

tc_created

This is the link node structure for tasks. It is linked
into the created tasks list, which is a doubly linked,
circular list.

tc_id This holds the internal task identification of
0x5441534B, which is an equivalent to ASCII TASK.

tc_name This is the user-specified, 8 character name for the
task.

tc_status This is the task’s current status.

tc_del ayed_suspend

A flag that indicates if task is suspended.

tc_priority

The current priority of the task.

tc_preenption

A flag that determines if preemption is enabled.

t c_schedul ed

This indicates the task’s scheduled count.

tc_cur_time_slice

This is the value of the current time slice.

*tc_stack_start

A pointer to the starting address for the task’s stack.

*tc_stack_end

A pointer to the ending address for the task’s stack.

*tc_stack_pointer

This is the task’s stack pointer.

tc_stack_size

Stores the task’s stack size.

tc_stack_m ni mum

The task’s minimum allowable stack size.

*tc_current_protect

A pointer to the task’s current protection structure.

*tc_saved_stack_ptr

The task’s previous stack pointer.

tc_time_slice

The value for the task’s current time-slice.

*t c_ready_previous

A pointer to the previously ready TCB.

*t c_ready_next

A pointer to the TCB that is next on the ready list.

tc_priority_group

The current mask of the priority group bit.

**tc_priority_head

A pointer to the head of the priority list.

*tc_sub_prioirty_ptr

A pointer to the priority sub-group.

tc_sub_priority

The current mask of the priority sub-group bit.

tc_saved_status

This is the previous task’s status.

tc_signal _active

A flag indicating if the signal is active or not.

t c_paddi ng

This is used to align the task structure on an even
boundary. In some ports this field is not used.

(*tc_entry) (UNSI GNED,
VO D *)

This is the task entry function.

tc_argc

An optional task argument.

43

Nucleus PLUS Internals

Field

Description

*tc_argv

An optional task argument.

(*tc_cl eanup) (VA D *)

This is the task clean-up routine.

*tc_cleanup_info

This is a pointer to task clean-up information.

*t c_suspend_pr ot ect

A pointer to the protection structure at the time of task
suspension.

tc_timer_active

A flag that determines if the timer is active.

tc_timer_control

The timer control block.

tc_signals

Contains the current signals.

tc_enabl ed_si gnal s

Contains the enabled signals.

(*tc_signal _handl er)

(UNSI GNED)

This is the signal handling routine.

tc_systemreserved_1

This is a reserved word for use by the system.

tc_systemreserved_2

This is a reserved word for use by the system.

tc_systemreserved_3

This is a reserved word for use by the system.

tc_app_reserved_1

This is a reserved word for use by the application.

HISR Control Block

The HISR Control Block TC HCB contains the HISR’s priority and other fields necessary
for processing task control requests.

Field Declarations

CS_NCDE
UNS| GNED
CHAR
DATA_ELEVENT
DATA_ELEVENT
DATA_ELEVENT
DATA_ELEVENT
UNSI GNED
UNSI GNED

VO D

VO D

VO D

UNSI GNED
UNSI GNED

tc_created

tc_id

t c_nane[NU_MAX_NAME]
tc_not_used_1
tc_not _used_2
tc_priority
tc_not _used_3

t c_schedul ed
tc_cur_time_slice
*tc_stack_start
*tc_stack_end
*tc_stack_pointer
tc_stack_size
tc_stack_m ni mum

struct TC_PROTECT_STRUCT *tc_current _protect

struct TC_HCB_STRUCT
UNSI GNED

va D

UNSI GNED

UNSI GNED

UNSI GNED

UNSI GNED

44

*tc_active_next
tc_activation_count
(*tc_entry) (VA D)
tc_systemreserved_1
tc_systemreserved_2
tc_systemreserved_3
tc_app_reserved_1

Field Summary

Chapter 4 - Component Descriptions

Field

Description

tc_created

This is the link node structure for HISRs. It is
linked into the created HISRs list, which is a
doubly linked, circular list.

tc_id This holds the internal HISR identification of
0x48495352, which is an equivalent to ASCII
HISR.

tc_nane

This is the user-specified, 8 character name for
the HISR.

tc_not_used_1

This field is a placeholder and is not used.

tc_not _used_2

This field is a placeholder and is not used.

tc_priority

This is the priority of the HISR.

tc_not _used_3

This field is a placeholder and is not used.

t c_schedul ed

This is the HISR scheduled count.

tc_cur_time_slice

This is the value of the current time slice.

*tc_stack_start

A pointer to the starting address for the HISR’s
stack.

*tc_stack_end

A pointer to the ending address for the HISR’s
stack.

*tc_stack_pointer

This is the HISR’s stack pointer.

tc_stack_size

Stores the HISR’s stack size.

tc_stack_m ni mum

The HISR’s minimum allowable stack size.

*tc_current_protect

A pointer to the HISR’s current protection
structure.

*tc_active_next

A pointer to the next activated HISR.

tc_activation_count

The activation counter for the HISR.

(*tc_entry) (VA D)

This is the HISR’s entry function.

tc_systemreserved_1

This is a reserved word for use by the system.

tc_systemreserved_2

This is a reserved word for use by the system.

tc_systemreserved_3

This is a reserved word for use by the system.

tc_app_reserved_1

This is a reserved word for use by the application.

45

Nucleus PLUS Internals

Protection Block

Nucleus PLUS protects the integrity of Nucleus PLUS data structures from competing tasks
and/or HISRs. This is done by using an internal protection structure called TC Pr ot ect .
All Nucleus PLUS data structure creation and deletion, and any list access is done under the
protection of TC Pr ot ect .

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting

Field Summary
Field Descripton
*tc_tcb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting
for the protection.

Thread Control Functions

The following sections provide a brief description of the functions in the Thread Control
Component (TC). Review of the actual source code is recommended for further
information.

TCC Create Task

This function creates a task and then places it on the list of created tasks. All the resources
necessary to create the task are supplied to this routine. If specified, the newly created task
is started. Otherwise, it is left in a suspended state.

STATUS TCC _Creat e_Task (NU_TASK *task_ptr, CHAR *name, VO D
(*task_entry) (UNSIGNED, VA D *),
UNSI GNED argc, VA D *argv, VA D
*st ack_addr ess, UNSI GNED
stack_si ze, OPTION
priority, UNSIGNED tine_sli ce,
OPTI ON preenpt, OPTION auto_start)

Functions Called

CSC Pl ace_On_List TCT TCT_Control _To_System
[H C_Make_History Entry] TCT_Prot ect
TCC_Resune_Task TCT_Unpr ot ect

TCT_Bui | d_Task_St ack TMC_ I nit_Task_Ti ner

[TCT_Check_St ack]

46

Chapter 4 - Component Descriptions

TCC Del ete_Task

This function deletes a task and removes it from the list of created tasks. It is assumed by
this function that the task is in a finished or terminated state. Note that this function does not
free memory associated with the task’s control block or its stack. That is the responsibility of
the application.

STATUS TCC Del et e_Task(NU_TASK *task_ptr)

Functions Called

CSC_Renove_From Li st

[H C_Make_History_ Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

TCC Create H SR

This function creates a High-Level Interrupt Service Routine (HISR) and then places it on
the list of created HISRs. All the resources necessary to create the HISR are supplied to this
routine. HISRs are always created in a dormant state.

STATUS TCC Create_H SR (NU_HI SR *hi sr_ptr, CHAR *name, VO D
(*hisr_entry) (VO D), OPTION priority,
VO D *st ack_addr ess, UNSI GNED st ack_si ze)

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History_ Entry]
TCT_Bui | d_HI SR_St ack

[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

47

Nucleus PLUS Internals

TCC Del ete H SR

This function deletes a HISR and removes it from the list of created HISRs. It is assumed by
this function that the HISR is in a non-active state. Note that this function does not free
memory associated with the HISR’s control block or its stack. This is the responsibility of
the application.

STATUS TCC Del et e_HI SR(NU_HI SR *hi sr_ptr)

Functions Called

CSC_Renpve_From Li st

[H C_Make_History_ Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

TCC Reset Task

This function resets the specified task. Note that a task reset can only be performed on tasks
in a finished or terminated state. The task is left in an unconditional suspended state.

STATUS TCC_Reset _Task(NU TASK *task_ptr, UNSI GNED ar gc,
VA D *argv)

Functions Called

[H C_Make_History_ Entry]
TCT_Bui | d_Task_St ack

[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

48

Chapter 4 - Component Descriptions

TCC Terni nat e_Task

This function terminates the specified task. If the task is already terminated, this function
does nothing. If the task to terminate is currently suspended, the specified cleanup routine is
also invoked to clean up suspension data structures.

STATUS TCC Term nat e_Task(NU_TASK *task_ptr)

Functions Called

Cl eanup routine

[H C_Make_History_ Entry]
TCC_Suspend_Task

[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect
TCT_Unprotect _Specific
TMC_St op_Task_Ti mer

TCC Resune_Task

This function resumes a previously suspended task. The task must currently be suspended
for the same reason indicated by this request. If the task resumed is of higher priority than
the calling task and the current task is preemptable, this function returns a value of
NU_TRUE. If no preemption is required, a NU_FALSE is returned.

STATUS TCC Resune_Task(NU TASK *task_ptr,
COPTI ON suspend_t ype)

Functions Called

[TCT_Check_St ack]
TCT_Set _Current _Protect
TCT_Set _Execut e_Task
TMC_St op_Task_Ti mer

49

Nucleus PLUS Internals

TCC _Resune_Service

This function provides a suitable interface to the actual service to resume a task.
STATUS TCC Resune_Servi ce(NU_TASK *task_ptr)

Functions Called

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_Pr ot ect

TCT_Unpr ot ect

TCC_Suspend_Task

This function suspends the specified task. If the specified task is the calling task, control is
transferred back to the system.

VO D TCC _Suspend_Task(NU_TASK *task_ptr, OPTI ON suspend_t ype,
VA D (*cl eanup) (VA D*), VA D*i nf ornati on,
UNSI GNED t i meout)

Functions Called

H C Make_Hi story Entry
TCT_Control _To_System
TCT_Pr ot ect

TCT_Set _Execut e_Task
TCT_Protect_Swi tch
TCT_Unpr ot ect

TMC_Start _Task_Ti ner

50

Chapter 4 - Component Descriptions

TCC _Suspend_Servi ce

This function provides a suitable interface to the actual service to suspend a task.
STATUS TCC Suspend_Servi ce(NU_TASK *task_ptr)

Functions Called

[H C_Make History_Entry]
TCC_Suspend_Task

[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

TCC Task_Ti neout

This function processes task suspension timeout conditions. Note that task sleep
requests are also considered a timeout condition.

VO D TCC Task_Ti meout (NU_TASK *task_ptr)

Functions Called

Caller’s cleanup function
TCC_Resune_Task

[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Set _Current _Protect
TCT_Unpr ot ect
TCT_Unprotect _Specific

51

Nucleus PLUS Internals

TCC Task_Sl eep

This function provides task sleep suspensions. Its primary purpose is to interface with the
actual task suspension function.

VO D TCC Task_S| eep(UNSI GNED ti cks)

Functions Called

[H C_Make History_ Entry]
TCC_Suspend_Task

[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

TCC_Rel i nqui sh

This function moves the calling task to the end of other tasks at the same priority level. The
calling task does not execute again until all the other tasks of the same priority get a chance
to execute.

VO D TCC_Rel i nqui sh(VA D)
Functions Called

[H C_Make History_ Entry]
[TCT_Check_St ack]
TCT_Control _To_System
TCT_Pr ot ect

TCT_Set _Execut e_Task
TCT_Unpr ot ect

52

Chapter 4 - Component Descriptions

TCC Time_Slice

This function moves the specified task to the end of the other tasks at the same priority level.
If the specified task is no longer ready, this request is ignored.

VO D TCC Tine_Slice(NU TASK *task_ptr)
Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect

TCT_Set Execut e_Task
TCT_Unpr ot ect

TCC Current _Task_ Poi nter

This function returns the pointer of the currently executing task. If the current thread is not a
task thread, a NU_NULL is returned.

NU_TASK *TCC_Current _Task_Poi nt er (VO D)
Functions Called

None

53

Nucleus PLUS Internals

TCC Current _HI SR Poi nt er

This function returns the pointer of the currently executing HISR. If the current thread is not
a HISR thread, a NU_NULL is returned.

NU_HI SR *TCC_Current _H SR _Poi nt er (VO D)

Functions Called

None

TCC Task_Shel |

This function is a shell from which all application tasks are initially executed. The shell
causes the task to finish when control is returned from the application task. Also, the shell
passes argc and argv arguments to the task’s entry function.

VO D TCC Task_Shel | (VO D)

Functions Called

Task Entry Function
TCC_Suspend_Task
TCT_Pr ot ect

54

Chapter 4 - Component Descriptions

TCC_Si gnal _Shel |

This function processes signals by calling the task-supplied signal handling function. When
signal handling is completed, the task is placed in the appropriate state.

VA D TCC_Si gnal _Shel | (VA D)

Functions Called

task’s signal handling routine
[TCT_Check_St ack]

TCT_Signal _Exit

TCT_Pr ot ect

TCT_Set _Execut e_Task

TCT_Unpr ot ect

TCC _Di spatch_LI SR

This function dispatches the LISR associated with the specified interrupt vector. Note that
this function is called during the interrupt thread.

VO D TCC _Di spat ch_LI SR(I NT vector)
Functions Called

application LISR
ERC_System Error

55

Nucleus PLUS Internals

TCC Register LISR

This function registers the supplied LISR with the supplied vector number. If the supplied
LISR is NU_NULL, the supplied vector is de-registered. The previously registered LISR is
returned to the caller, along with the completion status.

STATUS TCC _Regi ster_LI SR(I NT vector, VO D(*new_|lisr)(INT),
VA D (**old_lisr)(INT))

Functions Called

[H C_Make History_Entry]
I NT_Retrieve_Shell

| NT_Set up_Vect or

I NT_Vect ors_Loaded

[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

TCCE _Create_Task

This function performs error checking on the parameters supplied to the create task function.

STATUS TCCE_Creat e_Task(NU TASK *task_ptr, CHAR *nanme, VO D
(*task_entry) (UNSI GNED, VO D¥) ,
UNSI GNED argc, VA D *argv, VO D
*st ack_address, UNSI GNED st ack_si ze,
OPTION priority, UNSIGNED tinme_slice,
OPTI ON preenpt, OPTION auto_start)

Functions Called
TCC_Creat e_Task

56

Chapter 4 - Component Descriptions

TCCE _Create_H SR

This function performs error checking on the parameters supplied to the create HISR
function.

STATUS TCCE Create_H SR(NU_H SR *hi sr_ptr, CHAR *nane,
VO D (*hisr_entry)(VO D), OPTION priority,
VO D *stack_address, UNSI GNED st ack_si ze)

Functions Called
TCC Create_HI SR

TCCE_Del ete_Hl SR

This function performs error checking on the parameters supplied to the delete HISR
function.

STATUS TCCE Del ete_HI SR (NU_HI SR *hisr_ptr)

Functions Called
TCC Del ete_Hi SR

57

Nucleus PLUS Internals

TCCE _Del et e_Task

This function performs error checking on the parameters supplied to the delete task function.
STATUS TCCE Del et e_Task(NU_TASK *task_ptr)

Functions Called
TCC Del et e_Task

TCCE_Reset Task

This function performs error checking on the parameters supplied to the reset task function.

STATUS TCCE_Reset _Task(NU_TASK* task_ptr, UNSI GNED ar gc,
VO D *argv)

Functions Called
TCC_Reset _Task

TCCE_Ter m nat e_Task

This function performs error checking on the parameters supplied to the terminate task
function.

STATUS TCCE_Ter i nat e_Task(NU_TASK *task_ptr)

Functions Called
TCC_Ter m nat e_Task

58

Chapter 4 - Component Descriptions

TCCE_Resune_Servi ce

This function performs error checking on the parameters supplied to the resume task
function.

STATUS TCCE Resune_Servi ce(NU _TASK *task_ptr)

Functions Called

TCCE_Val i dat e_Resune
TCC_Resune_Servi ce

TCCE_Suspend_Servi ce

This function performs error checking on the suspend service.
STATUS TCCE_Suspend_Servi ce(NU_TASK *task_ptr)

Functions Called

TCC_Suspend_Servi ce

TCCE_Rel i nqui sh
This function performs error checking for the relinquish function. If the current thread is not
a task, this request is ignored.
VO D TCCE_Rel i nqui sh(VA D)
Functions Called
TCC_Rel i nqui sh

59

Nucleus PLUS Internals

TCCE Task_Sl eep

This function performs error checking for the task sleep function. If the current thread is not
a task, this request is ignored.

VO D TCCE _Task_S| eep(UNSI GNED ti cks)

Functions Called
TCC _Task_Sl eep

TCCE_Suspend_Error

This function checks for a suspend request error. Suspension requests are only allowed from
task threads. A suspend request from any other thread is an error.

I NT TCCE_Suspend_Err or (VO D)
Functions Called

None

TCCE Activate H SR

This function performs error checking on the parameters supplied to the activate HISR
function.

STATUS TCCE_Acti vate_H SR(NU_HI SR *hi sr_ptr)

Functions Called
TCT_Activate_H SR

60

Chapter 4 - Component Descriptions

TCCE Val i dat e_Resune

This function validates the resume service and resume driver calls with scheduling
protection around the examination of the task status.

STATUS TCCE Val i dat e_Resune(OPTI ON resune_t ype,
NU_TASK *task_ptr)

Functions Called

TCT_Set _Current _Protect
TCT_System Protect
TCT_Syst em Unpr ot ect
TCT_Unpr ot ect

TCF_Est abl i shed_Tasks

Returns the current number of established tasks. Tasks previously deleted are no longer
considered established.

UNSI GNED TCF_Est abl i shed_Tasks(VO D)

Functions Called
[TCT_Check_St ack]

TCF_Est abl i shed_H SRs

Returns the current number of established HISRs. HISRs previously deleted are no longer
considered established.

UNSI GNED TCF_Est abl i shed_H SRs(VA D)

Functions Called
[TCT_Check_St ack]

61

Nucleus PLUS Internals

TCF_Task_Pointers

Builds a list of task pointers, starting at the specified location. The number of task pointers
placed in the list is equivalent to the total number of tasks or the maximum number of
pointers specified in the call.

UNSI GNED TCF_Task_Poi nt er s(NU_TASK **poi nter_|i st,
UNSI GNED nmaxi mum _poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

TCF_HI SR Poi nters

Builds a list of HISR pointers, starting at the specified location. The number of HISR
pointers placed in the list is equivalent to the total number of HISRs or the maximum
number of pointers specified in the call.

UNSI GNED TCF_HI SR _Poi nters(NU_H SR **poi nter_|i st,
UNSI GNED mexi mum_poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

62

Chapter 4 - Component Descriptions

TCF_Task_I nformati on

Returns information about the specified task. However, if the supplied task pointer is invalid,
the function simply returns an error status.

STATUS TCF_Task_| nformati on(NU_TASK *task_ptr, CHAR *nane,
DATA _ELEMENT *stat us, UNSI GNED
*schedul ed_count, DATA ELEMENT
*priority, OPTION *preenpt,
UNSI GNED *tine_slice, VOD
**st ack_base, UNSI GNED
*stack_si ze, UNSI GNED
*m ni mum st ack)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

TCF_HI SR I nformati on

Returns information about the specified HISR. However, if the supplied HISR pointer is
invalid, the function simply returns an error status.

STATUS TCF_H SR I nformati on(NU_H SR *hi sr_ptr, CHAR *nane,
UNSI GNED *schedul ed_count,
DATA _ELEMENT *priority, VO D
**stack_base, UNSI GNED
*stack_si ze, UNSI GNED
m ni num_ st ack)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

63

Nucleus PLUS Internals

TC Initialize

This function initializes the data structures that control the operation of the TC
component. The system is initialized as idle.

VO D TC _Initialize(VaD)

Functions Called

None
TCS_Change_Priority

This function changes the priority of the specified task. The priority of a suspended or a
ready task can be changed. If the new priority requires a context switch, control is
transferred back to the system.

OPTION TCS Change_Priority(NU TASK *task_ptr, OPTI ON
new_priority)

Functions Called

[H C_Make History_ Entry]
[TCT_Check_St ack]
TCT_Control _To_System
TCT_Pr ot ect

TCT_Set _Execut e_Task
TCT_Unpr ot ect

64

Chapter 4 - Component Descriptions

TCS_Change_Preenpti on

This function changes the preemption posture of the calling task. Preemption for a task may
be enabled or disabled. If it is disabled, the task runs until it suspends or
relinquishes. If a preemption is pending, a call to this function to enable preemption causes a
context switch.

OPTION TCS_Change_Preenpti on(OPTI ON preenpt)

Functions Called

[H C_Make History_Entry]
[TCT_Check_St ack]
TCT_Control _To_System
TCT_Prot ect

TCT_Set _Execut e_Task
TCT_Unpr ot ect

TCS_Change_Tine_Slice

This function changes the time slice of the specified task. A time slice value of 0 disables
time slicing.

UNSI GNED TCS_Change_Ti me_Sl i ce(NU_TASK *task_ptr,
UNSI GNED ti ne_slice)

Functions Called

[H C_Make History_ Entry]
[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

65

Nucleus PLUS Internals

TCS Control _Signals

This function enables the specified signals and returns the previous enable signal value back
to the caller. If a newly enabled signal is present and a signal handler is registered, signal
handling is started.

UNSI GNED TCS_Control _Si gnal s(UNSI GNED enabl e_si gnal _nmask)

Functions Called

[H C_Make History_Entry]
TCC_Si gnal _Shel |

[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

TCS_Recei ve_Signal s

This function returns the current signals back to the caller. Note that the signals are cleared
automatically.

UNSI GNED TCS_Recei ve_Si gnal s(VO D)

Functions Called

[H C_Make History_ Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

66

Chapter 4 - Component Descriptions

TCS_Regi ster _Si gnal _Handl er

This function registers a signal handler for the calling task. Note that if an enabled signal is
present and this is the first registered signal handler call, the signal is processed immediately.

STATUS TCS Regi ster_Si gnal _Handl er (VO D (*si gnal _handl er)
(UNSI G\ED))

Functions Called

[H C_Make History_Entry]
TCC_Si gnal _Shel |

[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

TCS_Send_Si gnal s

This function sends the specified task the specified signals. If enabled, the specified task is
setup in order to process the signals.

STATUS TCS_Send_Si gnal s(NU_TASK *task_ptr, UNSI GNED si gnal s)

Functions Called

[H C_Make History_Entry]
TCC_Resune_Task

TCC_Si gnal _Shel |

TCT_Bui | d_Si gnal _Frame

[TCT_Check_St ack]

67

Nucleus PLUS Internals

TCSE Change Priority

This function performs error checking for the change priority service. If an error is detected,
this service is ignored and the requested priority is returned.

OPTI ON TCSE _Change_Priority(NU TASK *task_ptr,
OPTI ON new _priority)

Functions Called
TCS_Change_Priority

TCSE_Change_Preenpti on
This function performs error checking on the change preemption service. If the current
thread is not a task thread, this request is ignored.
OPTION TCSE_Change_Preenpti on(OPTI ON preenpt)

Functions Called
TCS_Change_Preenpti on

TCSE _Change _Tine_Slice

This function performs error checking on the change time slice service. If the specified task
pointer is invalid, this request is ignored.

UNSI GNED TCSE_Change_Ti me_Sl i ce(NU_TASK *task_ptr,
UNSI GNED tinme_slice)

Functions Called
TCS_Change_Time_Slice

68

Chapter 4 - Component Descriptions

TCSE Control _Signals

This function checks to see if the call is being made from a non-task thread. If so, the
request is simply ignored.

UNSI GNED TCSE_Cont rol _Si gnal s(UNSI GNED enabl e_si gnal _nmask)
Functions Called
TCS_Control _Signal s

TCSE_Recei ve_Si gnal s

This function determines whether or not the call is being made from a task thread of
execution. If not, the call is ignored.

UNSI GNED TCSE_Recei ve_Si gnal s(VO D)
Functions Called
TCS_Recei ve_Si gnal s

TCSE_Regi st er _Si gnal _Handl er

This function determines whether or not the caller is a task. If the caller is not a task and/or if
the supplied signal handling function pointer is NULL, an appropriate error status is
returned.

STATUS TCSE Regi ster_Si gnal _Handl er (VO D (*si gnal _handl er)
(UNSI GNED))

Functions Called
TCS_Regi ster _Si gnal _Handl er

69

Nucleus PLUS Internals

TCSE _Send_Si gnal s

This function checks for an invalid task. If an invalid task is selected an error is returned.
STATUS TCSE_Send_Si gnal s(NU_TASK *task_ptr, UNSI GNED si gnal s)

Functions Called
TCS_Send_Si gnal s

TCT_Control _Interrupts

This is an assembly language function that enables and disables interrupts as specified by the
caller. Interrupts disabled by this call are left disabled until another call is made to enable
them.

INT TCT_Control _Interrupts(new_|evel)
Functions Called

None

TCT_Local _Control Interrupts

This is an assembly language function, which enables and disables interrupts as
specified by the caller.

INT TCT_Local _Control _Interrupts(new_|evel)
Functions Called

None

70

Chapter 4 - Component Descriptions

TCT _Restore_Interrupts

This is an assembly language function that restores interrupts to that specified in the global
TCD_ I nterrupt _Level variable.

VO D TCT_Restore_Ilnterrupts(VA D)
Functions Called

None

TCT_Bui | d_Task_St ack

This is an assembly language function, which builds an initial stack frame for a task. The
initial stack contains information concerning initial values of registers and the task’s point of
entry. Furthermore, the initial stack frame is in the same form as an interrupt stack frame.

VO D TCT_Buil d_Task_Stack(TC_TCB *t ask)
Functions Called

None

TCT Bui | d_H SR _St ack

This is an assembly language function. It builds an HISR stack frame that allows quick
scheduling of the HISR.

VO D TCT Build_H SR Stack(TC HCB *hisr)
Functions Called

None

71

Nucleus PLUS Internals

TCT_Bui | d_Si gnal _Frane
This is an assembly language function that builds a frame on top of the task’s stack. This
causes the task’s signal handler to execute the next time the task is executed.
VO D TCT_Buil d_Signal _Frane(TC_TCB *t ask)

Functions Called

None

TCT_Check_St ack

This assembly language function checks the current stack for overflow conditions.
Additionally, this function keeps track of the minimum amount of stack space for the calling
thread and returns the current available stack space.

UNSI GNED TCT_Check_St ack(voi d)

Functions Called
ERC_System Error

TCT_Schedul e

This assembly language function waits for a thread to become ready. Once a thread is ready,
this function initiates a transfer of control to that thread.

VO D TCT_Schedul e(voi d)

Functions Called
TCT_Control _To_Thread

72

Chapter 4 - Component Descriptions

TCT_Control _To_Thread

This is an assembly language function. It transfers control to the specified thread. Each
time control is transferred to a thread, its scheduled counter is incremented. Additionally,
time slicing for task threads is enabled in this routine. The TCD_Current _Thread pointer
is set up by this function.

VO D TCT _Control _To_Thread(TC_TCB *t hr ead)
Functions Called

None

TCT_Control _To_System

This is an assembly language function that returns control from a thread to the system. Note
that this service is called in a solicited manner, i.e., it is not called from an interrupt thread.
Registers required by the compiler to be preserved across function boundaries are saved by
this routine. Note that this is usually a subset of the total number of available registers.

VO D TCT_Control _To_Systen(voi d)

Functions Called
TCT_Schedul e

73

Nucleus PLUS Internals

TCT_Signal Exit

This assembly language function exits from a signal handler. The primary purpose of this
function is to clear the scheduler protection and switch the stack pointer back to the normal
task’s stack pointer.

VO D TCT_Control _To_Systen(void)

Functions Called
TCT_Schedul e

TCT_Current _Thread

This is an assembly language function, which returns the current thread pointer.
VO D *TCT_Current_Thread(voi d)
Functions Called

None

TCT_Set Execute_Task

This assembly language function sets the current task to execute the variable under
protection, which is against interrupts.

VO D TCT_Set _Execute_Task(TC _TCB *t ask)
Functions Called

None

74

Chapter 4 - Component Descriptions

TCT_Pr ot ect

This assembly language function protects against multiple thread access. If another thread
(TASK or HISR) owns the requested protection structure, then that thread will be scheduled
to run until it releases the protection structure. At that time, the thread is suspended, and
control is returned to the thread doing the TCT_Prot ect call. This prevents lower priority
tasks from blocking higher priority threads trying to obtain a protection structure.

VO D TCT_Protect(TC PROTECT *protect)
Functions Called

None

TCT_Unpr ot ect

This is an assembly language function that releases protection of the currently active thread.
If the caller is not an active thread, then this request is ignored.

VO D TCT_Unpr ot ect (voi d)
Functions Called

None

75

Nucleus PLUS Internals

TCT_Unprotect _Specific

This assembly language function releases a specific protection structure.
VO D TCT_Unpr ot ect _Speci fi c(TC_PROTECT *protect)
Functions Called

None

TCT_Set _Current Protect

This is an assembly language function, which sets the current protection field of the current
thread’s control block to the specified protection pointer.

VO D TCT_Set_Current_Protect(TC PROTECT *protect)
Functions Called

None

TCT_Protect_Swi tch

This is an assembly language function that waits until a specific task no longer has any
protection associated with it. This is necessary since tasks cannot be suspended or
terminated unless they have released all of their protection.

VO D TCT_Protect_Sw tch(VA D *thread)
Functions Called

None

76

Chapter 4 - Component Descriptions

TCT_Schedul e_Prot ect ed

This assembly language function saves the minimal context of a thread. Then it directly
schedules another thread that has protection over the thread that called this routine.

VO D TCT_Schedul e_Protected(VA D *t hr ead)

Functions Called
TCT_Control _To_Thread

TCT _Interrupt_Context_ Save

This is an assembly language function that saves the interrupted thread’s context. Nested
interrupts are also supported. If a task or HISR thread was interrupted, the stack pointer is
switched to the system stack after the context is saved.

VO D TCT_I nterrupt_Context_Save(vector)
Functions Called

None

TCT_Interrupt_Context_ Restore

This assembly language function restores the interrupt context if a nested interrupt condition
is present. Otherwise, this routine transfers control to the scheduling
function.

VO D TCT_I nterrupt_Context_Restore(voi d)

Functions Called
TCT_Schedul e

71

Nucleus PLUS Internals

TCT_Activate H SR

This is an assembly language function, which activates the specified HISR. If the HISR is
already activated, the HISR’s activation count is simply incremented. Otherwise, the HISR
is placed on the appropriate HISR priority list in preparation for execution.

STATUS TCT Activate H SR(TC_HCB *hi sr)
Functions Called

None

TCT_H SR _Shel |

This is an assembly language function that is the execution shell of each and every HISR. If
the HISR has completed its processing, this shell routine exits back to the system.
Otherwise, it sequentially calls the HISR routine until the activation count goes to zero.

VO D TCT_HI SR_Shel | (voi d)

Functions Called

hisr -> tc_entry

78

Chapter 4 - Component Descriptions

TCT_Check_For_Preenption

This is an assembly language function that checks to see if some other interrupt
condition occurred while a minimal ISR was in process. If so, a full context save and restore
is performed in order to process the preemption. Otherwise, control is
transferred back to the point of interrupt.

VO D TCT_Check_For _Preenpti on(voi d)

Functions Called

TCT_I nterrupt _Cont ext _Save
TCT_Interrupt _Context_Restore

79

Nucleus PLUS Internals

Timer Component (TM)

Ti

80

The Timer Component (TM) is responsible for processing all Nucleus PLUS timer facilities.
The basic unit of time for a Nucleus PLUS timer is a tick, which corresponds to a single
hardware timer interrupt. Nucleus PLUS timers can be applied at the application level to
execute a particular routine at timer expiration. Timers can also apply to tasks and are used
to provide task sleeping and service call suspension timeouts.

Nucleus PLUS Reference Manual for more detailed information about timers.

mer Files

The Timer Component (TM) consists of nine files.

Component is defined below.

File Description

TM_DEFS. H This file contains constants and data structure definitions
specific to the TM.

TM EXTR H All external interfaces to the TM are defined in this file.

TMD. C Global data structures for the TM are defined in this file.

™ .C This file contains the initialization function for the TM.

T™F. C This file contains the information gathering functions for the
TM.

T™C. C This file contains all of the core functions of the TM.
Functions that handle basic start-timer and stop-timer services
are defined in this file.

T™s. C This file contains supplemental functions of the TM.
Functions contained in this file are typically used less
frequently than the core functions.

TMBE. C This file contains the error checking function interfaces for the
supplemental functions defined in TVS. C.

TMT. [S, ASM SRC] | This file contains all of the target dependent functions of the
™

Please see Chapter 3 of the

Each source file of the Timer

Chapter 4 - Component Descriptions

Timer Data Structures

Created Timers List

Nucleus PLUS application timers may be created and deleted dynamically. The Timer
Control Block (APP_TCB) for each created timer is kept on a doubly linked, circular list.
Newly created timers are placed at the end of the list, while deleted timers are completely
removed from the list. The head pointer of this list is TMD_Cr eat ed_Ti mers_Li st. The
Created Timers List is used exclusively for application timers.

TMD_Created_Timers_List

APP_TCB | APP_TCB | APP_TCB N APP_TCB

T A

Created Timer List Protection

Nucleus PLUS protects the integrity of the Created Timers List from competing tasks and/or
HISRs. This is done by wusing an internal protection structure called
TMD _Created_List_Protect. All timer creation and deletion is done under the
protection of TMD_Cr eat ed_Li st _Protect.

Field Declarations

TC_TCB *tc_tchb_pointer
UNSI GNED tc_thread_waiting
Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are
waiting for the protection.

81

Nucleus PLUS Internals

Total Timers

The total number of currently created Nucleus PLUS timers is contained in the variable
TMD _Tot al _Ti mers. The contents of this variable correspond to the number of TCBs on
the created list. Manipulation of this variable is also done wunder the
protection of TMD_Cr eat ed_Li st_Protect.

Active Timers List

82

Nucleus PLUS active timers are maintained on a doubly linked, circular list.
TMD _Active_Tinmers_List is the head pointer to this list. If this pointer is NULL, there
are no timers active. The timer list supports both application timers and task timers. Task
timer structures reside in the task’s TCB. The timer list is maintained in order of expiration
time. The remaining time is in delta expirations, not absolute time. This is done in order to
avoid adjusting the entire list on every timer interrupt. A timer with a remaining time of zero
is considered to be expired.

TMD_Active_Timers List

A

T™M_APP TCB 1
_|—> or

™ TCB 1 -
X

Y

TM_APP_TCB2
or
TM_TCB 2
A

A 4

TM_APP_TCB 3
or

TM_TCB 3

A

y
TM_APP TCBn
or [—
TM_TCB n

Chapter 4 - Component Descriptions

Active List Busy
Nucleus PLUS protects the integrity of the Active Timers List from competing tasks and/or
HISRs. This is done by using a protection flag called TMD_Active_List_Busy. All
active timer list additions and deletions are done under the protection of
TMD_Active_List_Busy.

System Clock
Nucleus PLUS maintains a continually incrementing system clock called
TMD_Syst em C ock. The clock is incremented by one each timer interrupt.

Timer Start

Nucleus PLUS stores the value of the last timer request in the variable TMD_Ti mer _St art.

Timer

The variable TMD_Ti mer is a countdown timer that is used to represent the smallest active
timer value in the system. When a timer expires, this variable has a value of zero.

Timer State

TMD_Ti ner _St at e indicates the state of the timer variable. If the state is active, the timer
counter is decremented. If the state is expired, the timer HISR and timer task are initiated to
process the expiration. If the state indicates that the timer is not active, the timer counter is
ignored.

Time Slice

Nucleus PLUS uses the variable TMD_Ti me_Sl i ce as a countdown value for the currently
executing task’s time slice. Time slice processing is started when the value of
TVMD_Ti me_Sl i ce becomes zero.

Time Slice Task

TMD _Time_Slice_Task is a pointer to the TCB of the task to time-slice. This pointer is
setup in the timer interrupt when a time-slice timer has expired.

Time Slice State

Nucleus PLUS indicates the state of the time slice variable using TMD_Ti ne_Sl i ce_St at e.
If the state is active, the time slice counter is decremented. If the state is expired, the timer
HISR is initiated to process the
expiration. If the state indicates that the time slice is not-active, the time slice counter is
ignored.

83

Nucleus PLUS Internals

HISR
TMD_HI SR is the timer HISR’s control block.

HISR Stack Pointer

TMD_H SR _Stack_Ptr points to the memory area reserved for the timer HISR. Note that
thisissetupin I NT_Initialize.

HISR Stack Size

Nucleus PLUS determines the size of the allocated timer HISR stack with the variable
TMD_HI SR _St ack_Si ze. Note that thisis setupin I NT_Initiali ze.

HISR Priority

TMD_HI SR _Priority indicates the priority of the timer HISR. Priorities range from 0 to
2, where priority 0 is the highest. Note that this is also initialized in | NT_I ni ti al i ze.

Timer Control Block

The Timer Control Block TM TCB contains the remaining time and other fields necessary
for processing timer requests.

Field Declarations

I NT tmtiner_type

UNSI GNED tmrenmaining_tine

VO D *tm_ i nformation

struct TM_TCB_STRUCT *tm next _tinmer

struct TM_TCB_STRUCT *tm_previous_tiner

Field Summary

Field Description
tmtimer_type Indicates if the timer is for an application or a task.
tm.remaining_time This stores the amount of time remaining after

expiration of the previous timer occurs. The true
expiration is the sum of all previous timer’s
remaining time on the active list

*tm.information A pointer to general information about the timer.
*tmonext _timer A pointer to the next timer in the list.
*tm previous_tiner A pointer to the previous timer in the list.

84

Chapter 4 - Component Descriptions

Application’s Timer Control Block

The Application’s Timer Control Block TM APP_TCB contains a pointer to the timer
expiration routine and other fields necessary for processing application timer requests.

Field Declarations

CS_NODE tmcreated
UNSI GNED tmid
CHAR t m_nane[NU_MAX_NAME]
VO D (*tm_expiration_routine)(UNSI GNED)
UNSI GNED tmexpiration_id
I NT t m enabl ed
UNSI GNED tm expirations
UNSI GNED tminitial _tinme
UNSI GNED tmreschedul e_tine
TM_TCB tmactual _tiner
Field Summary
Field Descripton

tmcreated

This is the link node structure for timers. It is linked
into the created timers list, which is a doubly linked,
circular list.

tmid This holds the internal timer identification of
0x54494D45, which is an equivalent to ASCII
TIME.

tm name This is the user-specified, 8 character name for the

timer.

*tm expiration_routine

A pointer to the timer expiration function.

tmexpiration_id

This is the name of the expiration.

t m enabl ed

A flag that determines if the timer is enabled.

tm expirations

This stores the number of timer expirations.

tminitial _tinme

Stores the initial starting time for the timer.

tmreschedul e_tine

Stores the reschedule time for the timer.

tm.actual _timer

The actual timer TCB.

85

Nucleus PLUS Internals

Timer Functions

The following sections provide a brief description of the functions in the Timer
Component (TM). Review of the actual source code is recommended for further
information.

TMC I nit_Task_Ti nmer

This function is responsible for initializing the supplied task timer.
VO D TMC Init_Task_Tiner(TM TCB *tiner, VO D *infornmation)
Functions Called

None

TMC_Start_Task_Ti nmer

This function is responsible for starting a task timer. Note that there are some special
protection considerations since this function is called from the task control component.

VO D TMC Start_Task_Timer(TM.TCB *timer, UNSI GNED ti nme)

Functions Called
TMC_Start _Ti ner

86

Chapter 4 - Component Descriptions

TMC _St op_Task_Ti ner

This function is responsible for stopping a task timer. Note that there are some special
protection considerations since this function is called from the task control component.

VO D TMC Stop_Task_Ti ner(TM.TCB *ti ner)
Functions Called
TMC_St op_Ti ner

TMC _Start _Ti mer

This function is responsible for starting both application and task timers.
VOD TMC Start_Timer(TM.TCB *tiner, UNSIGNED ti nme)
Functions Called

TMI_Read_Ti rer
TMT_Adj ust _Ti mer
TMT_Enabl e_Ti mer

87

Nucleus PLUS Internals

TMC St op_Ti ner

This function is responsible for stopping both application and task timers.
VO D TMC Stop_Tinmer(TM TCB *ti mer)

Functions Called
TMT_Di sabl e_Ti ner

TMC Ti mer _H SR

This function is responsible for High-Level interrupt processing of a timer expiration. If an
application timer has expired, the timer expiration function is called. Otherwise, if the time-
slice timer has expired, time-slice processing is invoked.

VO D TMC Timer_H SR(VO D)
Functions Called

TCC Time_Slice
TMC_Ti mer _Expiration
TMI_Retrieve_ TS Task

88

Chapter 4 - Component Descriptions

TMC Ti mer _Expiration

This function is responsible for processing all task timer expirations. This includes
application timers and basic task timers that are used for task sleeping and timeouts.

VO D TMC Ti ner _Expiration(Vd D)
Functions Called

expi ration_function
TCC_Task_Ti meout
TCT_System Prot ect
TCT_Unpr ot ect

TM-_Est abl i shed_Ti ners

This function returns the current number of established timers. Timers previously deleted
are no longer considered established.

UNSI GNED TM-_Est abl i shed_Ti mer s(VA D)
Functions Called
[TCT_Check_St ack]

TMF_CGet _Remmi ni ng_Ti ne

This function retrieves the remaining time before the expiration of the specified timer.

UNSI GNED TMF_Get _Remai ni ng_Ti ne(NU_TI MER *ti ner,
UNSI GNED *remai ni ng_ti me)

Functions Called

TCT_Prot ect
TCT_Unpr ot ect

89

Nucleus PLUS Internals

TMF_Timer _Pointers

Builds a list of timer pointers, starting at the specified location. The number of timer
pointers placed in the list is equivalent to the total number of timers or the maximum number
of pointers specified in the call.

UNSI GNED TMF_Ti mer _Poi nt er s(NU_TI MER **poi nter_|i st,
UNSI GNED maxi mum_poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

TMF_Timer _Information

This function returns information about the specified timer. However, if the supplied timer
pointer is invalid, the function simply returns an error status.
STATUS TMF_Ti mer _I nformati on(NU_TI MER *ti ner_ptr, CHAR *nane,

OPTI ON *enabl e, UNSI GNE*expi rati ons,

UNSI GNED *id, UNSIGNED*initial_tine,
UNSI GNED *reschedul e_ti ne)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

90

Chapter 4 - Component Descriptions

T _Initialize

This function initializes the data structures that control the operation of the Timer
Management component. There are no application timers created initially.

VOD TM _Initialize(Va D)

Functions Called

ERC_System Error
TCC Create_HI SR
TCCE _Create_HI SR

TMS_Create_Tinmer

This function creates an application timer and places it on the list of created timers. The
timer is activated if designated by the enable parameter.

STATUS TMS Create_Ti mer (NU_TI MER *tiner_ptr, CHAR *name, VO D
(*expiration_routine)
(UNSI GNED), UNSI GNED i d, UNSI GNED
initial _tinme, UNSI GNED
reschedul e_ti me, OPTI ON enabl e)

Functions Called

CSC Pl ace_On_Li st

[H C_Make History_ Entry]
[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect
TM5_Control _Ti ner

91

Nucleus PLUS Internals

TMS_Del ete_Ti mer

This function deletes an application timer and removes it from the list of created timers.
STATUS TMS_Del ete_Ti mer (NU_TI MER *ti nmer_ptr)

Functions Called

CSC_Renobve_From Li st

[H C_Make History_Entry]
[TCT_Check_St ack]

TCT_Pr ot ect

TCT_System Prot ect
TCT_Unpr ot ect

TMS_Reset _Ti ner

This function resets the specified application timer. Note that the timer must be in a disabled
state prior to this call. The timer is activated after it is reset if the enable parameter specifies
automatic activation.

STATUS TMsS_Reset _Ti ner (NU_TI MER *tiner_ptr, VAD
(*expiration_routine)(UNSI GNED) , UNSI GNED
initial _tinme, UNSI GNED
reschedul e_ti me, OPTI ON enabl e)

Functions Called

[H C_Make History_Entry]
[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect
TMS_Control _Ti mer

92

Chapter 4 - Component Descriptions

TMS_Control _Ti mer

This function either enables or disables the specified timer. If the timer is already in the
desired state, simply leave it alone.

STATUS TMs_Control _Ti mer (NU_TI MER *app_ti mer, OPTI ON enabl e)
Functions Called

[H C_Make History_ Entry]
[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

TMC_Start _Ti ner

TMC_St op_Ti ner

TMSE Creat e Ti nmer

This function performs error checking on the parameters supplied to the create timer
function.
STATUS TMSE Create_Timer (NU_TIMER *tiner_ptr, CHAR *nane,

VO D (*expiration_routine)

(UNSI GNED), UNSI GNED i d, UNSI GNED

initial _tinme, UNSI GNED

reschedul e_ti me, OPTI ON enabl e)

Functions Called

TVS_Create_Ti mer

93

Nucleus PLUS Internals

TMSE Del et e_Ti ner

This function performs error checking on the parameters supplied to the delete timer
function.

STATUS TMSE Del ete_Ti mer (NU_TI MER *ti mer_ptr)

Functions Called
TVS_Del et e_Ti mer

TMSE_Reset _Ti nmer

This function performs error checking on the parameters supplied to the reset timer function.

STATUS TMSE Reset _Tinmer (NU_TIMER *tinmer_ptr, VOD
(*expiration_routine)(UNSI GNED),
UNSI GNED initial _time, UNSI GNED
reschedul e_ti me, OPTI ON enabl e)

Functions Called
TV5_Reset _Ti ner

TMSE_Cont rol _Ti nmer

This function performs error checking on the parameters supplied to the control timer
function.

STATUS TMSE Control _Ti mer (NU_TI MER *timer_ptr, OPTION enabl e)

Functions Called
TMS_Cont rol _Ti mer

94

Chapter 4 - Component Descriptions

TMI_Set d ock

This assembly language function sets the system clock to the specified value.
VO D TMI_Set _C ock(UNSI GNED new_val ue)
Functions Called

None

TMI_Retrieve_C ock

This is an assembly language function that returns the current value of the system clock.

UNSI GNED TMI_Retri eve_Cl ock(voi d)
Functions Called

None

95

Nucleus PLUS Internals

TMI_Read_Ti ner

This is an assembly language function, which returns the current value of the countdown
timer.

UNSI GNED TMI_Read_Ti nmer (voi d)
Functions Called

None

TMI_Enabl e_Ti mer

This is an assembly language function that enables the countdown timer with the
specified value.

VO D TMI_Enabl e_Ti nmer (UNSI GNED ti ne)
Functions Called

None

TMI_Adj ust _Ti nmer

This is an assembly language function that adjusts the countdown timer with the
specified value - if the new value is less than the current.
VO D TMI_Adj ust _Ti mer (UNSI GNED ti nme)

Functions Called

None

96

Chapter 4 - Component Descriptions

TMI_Di sabl e_Ti ner

This assembly language function disables the countdown timer.
VO D TMI_Di sabl e_Ti mer (voi d)
Functions Called

None

TMI_Retrieve TS Task

This is an assembly language function that returns the time-sliced task pointer.
NU TASK *TMT_Retrieve TS Task(VO D)
Functions Called

None

TMI_Ti mer _I nt errupt

This assembly language function processes the actual hardware interrupt.

Processing

includes updating the system clock and the countdown timer and the time-slice timer. If one

or both of the timers expire, the timer HISR is activated.
VO D TMI_Ti mer_I nterrupt(void)
Functions Called

TCT_Activate_H SR
TCT_I nterrupt _Cont ext_Save
TCT_I nterrupt _Context_Restore

97

Nucleus PLUS Internals

Mailbox Component (MB)

The Mailbox Component (MB) is responsible for processing all Nucleus PLUS mailbox
facilities. A Nucleus PLUS mailbox is a low overhead mechanism for
inter-task communication. Each mailbox is capable of holding one message. A mailbox
message consists of four 32-bit words. Tasks may suspend while waiting for a message
from an empty mailbox. Conversely, tasks may suspend while trying to send to a mailbox
that already contains a message. Mailboxes are dynamically created and deleted by the user.
Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information
about mailboxes.

Mailbox Files

The Mailbox Component (MB) consists of nine files. Each source file of the Mailbox
Component is defined below.

File Description

MB_DEFS. H This file contains constants and data structure definitions specific to
the MB.

MB_EXTR H All external interfaces to the MB are defined in this file.

MBD. C Global data structures for the MB are defined in this file.

MBI . C This file contains the initialization function for the MB.

MBF. C This file contains the information gathering functions for the MB.

MBC. C This file contains all of the core functions of the MB. Functions that
handle basic send-to-mailbox and receive-from-mailbox services are
defined in this file.

MBS. C This file contains supplemental functions of the MB. Functions
contained in this file are typically used less frequently than the core
functions

MBCE. C This file contains the error checking function interfaces for the core
functions defined in MBC. C.

MBSE. C This file contains the error checking function interfaces for the
supplemental functions defined in MBS. C.

98

Chapter 4 - Component Descriptions

Mailbox Data Structures

Created Mailbox List

Nucleus PLUS mailboxes may be created and deleted dynamically. The Mailbox Control
Block (MCB) for each created mailbox is kept on a doubly linked, circular list. Newly
created mailboxes are placed at the end of the list, while deleted
mailboxes are completely removed from the list. The head pointer of this list is
MBD_Cr eat ed_Mai | boxes_Li st.

MBD_Created_Mailboxes_List

McB [mMcB [MCB oo MCB

Created Mailbox List Protection

Nucleus PLUS protects the integrity of the Created Mailboxes List from competing tasks
and/or HISRs. This is done by wusing an internal protection structure called
MBD List_Protect. All mailbox creation and deletion is done wunder the
protection of MBD_Li st _Protect.

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting
Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.

tc_thread_waiting | A flagindicating that one or more threads are waiting for
the protection.

Total Mailboxes

The total number of currently created Nucleus PLUS mailboxes is contained in the variable
MBD_Tot al _Mai | boxes. The content of this variable corresponds to the number of MCBs
on the created list. Manipulation of this variable is also done under the protection of
MBD_Li st _Protect.

99

Nucleus PLUS Internals

Mailbox Control Block

The Mailbox Control Block MB_MCB contains the mailbox message area (4 32-bit unsigned
words) and other fields necessary for processing mailbox requests.

Field Declarations

CS_NODE nb_creat ed
UNSI GNED nmb_id
CHAR nb_name[NU_MAX_NAME]
DATA_ELEMENT nb_nessage_present
DATA ELEMENT nmb_fifo_suspend
DATA_ELEMENT nb_paddi ng[PAD_2]
UNSI GNED nb_t asks_wai ting
UNSI GNED nb_nessage_ar ea[MB_MESSAGE_SI ZE]
struct MB_SUSPEND _STRUCT *nb_suspension_li st
Field Summary
Field Description
nb_creat ed This is the link node structure for mailboxes. It is linked into the
created mailbox list, which is a doubly linked, circular list.
mb_i d This holds the internal mailbox identification of 0X4D424F58,
which is an equivalent to ASCII MBOX.
nmb_name This is the user-specified, 8 character name for the mailbox.
nb_nessage_pr esent A flag that indicates if a message is present in the mailbox.
nmb_fifo_suspend A flag that determines whether tasks suspend in FIFO or priority
order.
nb_paddi ng This is used to align the mailbox structure on an even boundary. In
some ports this field is not used.
nmb_t asks_wai ting Indicates the number of tasks that are currently suspended on the
mailbox.
nb_nessage_ar ea The storage area for the message.
*nb_suspension_li st The head of the mailbox suspension list. If no tasks are suspended,
this pointer is NULL.

100

Chapter 4 - Component Descriptions

Mailbox Suspension Structure

Tasks can suspend on empty and full mailbox conditions. During the suspension process a
MB_SUSPEND structure is built. This structure contains information about the task and the
task’s mailbox request at the time of suspension. This suspension structure is linked onto the
MCB in a doubly linked, circular list and is allocated off of the suspending task’s stack.
There is one suspension block for every task suspended on the mailbox.

The order of the suspension block placement on the suspend list is determined at mailbox
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Mailbox n
MCB
task 0 < task 1 < task 2 40 4 task n
| MB_SUSPEND » MB_SUSPEND » MB_SUSPEND . ¢ * — ! MB_SUSPEND
Field Declarations
CS_NODE nb_suspend_l i nk
VB_MCB *nmb_mai | box
TC_TCB *mb_suspended_t ask
UNSI GNED *nb_nessage_ar ea
STATUS nb_return_status
Field Summary
Field Description
mb_suspend_| i nk A link node structure for linking with other suspended
blocks. It is used in a doubly linked circular suspension
list.
*nb_mai | box A pointer to the mailbox structure.
*nb_suspended_task | A pointer to the Task Control Block of the suspended task.
*nb_nessage_ar ea A pointer indicating where the suspended tasks’s message
buffer is.
mb_return_status The completion status of the task suspended on the
mailbox.

101

Nucleus PLUS Internals

Mailbox Functions

The following sections provide a brief description of the functions in the Mailbox
Component (MB). Review of the actual source code is recommended for further
information.

MBC Create_ Mai | box

Creates a mailbox and then places it on the list of created mailboxes.

STATUS MBC Create_Mail box (NU_MAI LBOX *nai | box_ptr, CHAR
*name, OPTI ON suspend_type)

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History Entry]
[TCT_Check_St ack]
TCT_Protect

TCT_Unpr ot ect

MBC Del et e_Mai | box

This function deletes a mailbox and removes it from the list of created mailboxes. All tasks
suspended on the mailbox are resumed. Note that this function does not free the memory
associated with the mailbox control block. That is the responsibility of the application.

STATUS MBC Del et e_Mai | box(NU_MAI LBOX *mai | box_ptr)

Functions Called

CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System

102

Chapter 4 - Component Descriptions

MBC _Send_To_Mai | box

This function sends a 4-word message to the specified mailbox. If there are one or more
tasks suspended on the mailbox for a message, the message is copied into the message area
of the first task waiting and that task is resumed. If the mailbox is full, suspension of the
calling task is possible.

STATUS MBC_Send_To_Mai | box(NU_MAI LBOX *nmai | box_ptr, VO D *nessage,
UNSI GNED suspend)

Functions Called
CSC Pl ace_On_Li st
CSC Priority_Place_On_Li st
CSC_Renove_From Li st
[H C_Make History_Entry]
TCC_Resune_Task
TCC_Suspend_Task

MBC Recei ve_From Mai | box

This function receives a message from the specified mailbox. If there is a message currently
in the mailbox, the message is removed from the mailbox and placed in the caller’s area.
Otherwise, if no message is present in the mailbox, suspension of the calling task is possible.

STATUS MBC_Recei ve_From Mai | box(NU_MAI LBOX *mai | box_ptr,
VA D *nessage, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task
TCC_Suspend_Task

103

Nucleus PLUS Internals

MBC_Cl eanup

This function is responsible for removing a suspension block from a mailbox. It is not called
unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VO D MBC_d eanup(VA D *i nformati on)

Functions Called

CSC_Renpve_From Li st

MBCE_Cr eat e_Mai | box

This function performs error checking on the parameters supplied to the mailbox create
function.

STATUS MBCE_Create_Mil box (NU_MAILBOX *nai |l box_ptr,
CHAR *nane, OPTI ON suspend_type)

Functions Called
MBC_Cr eat e_Mai | box

MBCE_Del et e_Mai | box

This function performs error checking on the parameters supplied to the actual delete
mailbox function.

STATUS MBCE_Del et e_Mai | box(NU_MAI LBOX *mai | box_ptr)

Functions Called
MBC_Del et e_Mai | box

104

Chapter 4 - Component Descriptions

MBCE_Send_To_Mai | box

This function performs error checking on the parameters supplied to the send-to-mailbox
function.

STATUS MBCE_Send_To_Mai | box(NU_MAI LBOX *nmai | box_ptr,
VA D *nessage, UNSI GNED suspend)

Functions Called

MBC_Sent _To_Mai | box
TCCE_Suspend_Error

MBCE _Recei ve_From Mai | box

This function performs error checking on the parameters supplied to the receive message
from mailbox function.

STATUS MBCE_Recei ve_From Mai | box (NU_MAI LBOX *mai | box_ptr,
VO D *nessage, UNSI GNED suspend)

Functions Called

MBC_Recei ve_From Mai | box
TCCE_Suspend_Err or

105

Nucleus PLUS Internals

MBF_Est abl i shed_Mai | boxes

Returns the current number of established mailboxes. Mailboxes previously deleted are no
longer considered established.

UNSI GNED MBF_Est abl i shed_Mai | boxes(VA D)

Functions Called
[TCT_Check_St ack]

MBF_Mai | box_Poi nters

Builds a list of mailbox pointers, starting at the specified location. The number of mailbox
pointers placed in the list is equivalent to the total number of mailboxes or the maximum
number of pointers specified in the call.

UNSI GNED MBF_Mai | box_Poi nt er s(NU_MAI LBOX **poi nter _|ist,
UNSI GNED nmaxi mum _poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

106

Chapter 4 - Component Descriptions

MBF_Mai | box_| nformati on

Returns information about the specified mailbox. However, if the supplied mailbox pointer
is invalid, the function simply returns an error status.

STATUS MBF_Mai | box_| nformati on(NU_MAI LBOX *nmai | box_ptr,
CHAR *nane, OPTI ON *suspend_t ype,
DATA_ELEMENT *nessage_present,
UNSI GNED *t asks_waiting, NU TASK **first_task)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

MBI Initialize

This function initializes the data structures that control the operation of the Mailbox
Component. There are no mailboxes initially.
VOD MI_lnitialize(VA D)

Functions Called

None

107

Nucleus PLUS Internals

MBS _Reset Mai | box

This function resets a mailbox back to the initial state. Any message in the mailbox is
discarded. Also, all tasks suspended on the mailbox are resumed with the reset completion
status.

STATUS MBS _Reset _Mai | box(NU_MAI LBOX *mai | box_ptr)

Functions Called

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_System Prot ect
TCT_Unpr ot ect

MBS Br oadcast To_Mai | box

This function sends a message to all tasks currently waiting for a message from the mailbox.
If no tasks are waiting, this service behaves like a normal send message routine.

STATUS MBS _Broadcast _To_Mai | box(NU_MAI LBOX *mai | box_ptr, VO D *nessage,
UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
CSC_Renove_From Li st

[H C_Make History_Entry]
TCC_Resune_Task
TCC_Suspend_Task

108

Chapter 4 - Component Descriptions

MBSE _Reset Mai | box

This function performs error checking on the parameters supplied to the actual reset mailbox
function.

STATUS MBSE_Reset _Mai | box(NU_MAI LBOX *nmai | box_ptr)
Functions Called
MBS_Reset _Mai | box

MBSE Broadcast To_ Mail box

This function performs error checking on the parameters supplied to the mailbox broadcast
function.

STATUS MBSE_Br oadcast _To_Mai | box(NU_MAI LBOX *mai | box_ptr,
VA D *nessage, UNSI GNED suspend)

Functions Called

MBS_Br oadcast _To_Mai | box
TCCE_Suspend_Error

Queue Component (QU)

The Queue Component (QU) is responsible for processing all Nucleus PLUS queue
facilities. A Nucleus PLUS queue is a mechanism for tasks to communicate between each
other. Each queue is capable of holding multiple messages. A queue message consists of
one or more 32-bit words. Tasks may suspend while waiting for a message from an empty
queue. Conversely, tasks may suspend while trying to send to a queue that is in a full
condition. Queues are dynamically created and deleted by the user. Please see Chapter 3 of
the Nucleus PLUS Reference Manual for more detailed information about queues.

109

Nucleus PLUS Internals

Quevue Files

The Queue Component (QU) consists of nine files. FEach source file of the Queue
Component is defined below.

File Description

QU _DEFS. H This file contains constants and data structure definitions specific
to the QU.

QU_EXTR H All external interfaces to the QU are defined in this file.

QUD. C Global data structures for the QU are defined in this file.

Q. C This file contains the initialization function for the QU.

QUF. C This file contains the information gathering functions for the QU.

QC. C This file contains all of the core functions of the QU. Functions

that handle basic send-to-queue and receive-from-queue services
are defined in this file.

Qs. C This file contains supplemental functions of the QU. Functions
contained in this file are typically used less frequently than the
core functions.

QUCE. C This file contains the error checking function interfaces for the
core functions defined in QUC. C.
QUSE. C This file contains the error checking function interfaces for the

supplemental functions defined in QUS. C.

Queue Data Structures

Created Queue List

Nucleus PLUS queues may be created and deleted dynamically. The Queue Control Block
(QCB) for each created queue is kept on a doubly linked, circular list. Newly created queues
are placed at the end of the list, while deleted queues are completely removed from the list.
The head pointer of this list is QUD_Cr eat ed_Queues_Li st .

QUD_Created_Queues_List

QCB QcB QCB D QCB

110

Chapter 4 - Component Descriptions

Created Queue List Protection

Nucleus PLUS protects the integrity of the Created Queues List from competing tasks and/or
HISRs. This is done by using an internal protection structure called QUD_Li st _Prot ect .
All queue creation and deletion is done under the protection of QUD_Li st _Pr ot ect .

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting
Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.
tc_thread_waiting | A flag indicating that one or more threads are waiting for the
protection.

Total Queues

The total number of currently created Nucleus PLUS queues is contained in the variable
QUD_Tot al _Queues. The contents of this variable corresponds to the number of QCBs on
the created list. Manipulation of this variable is also done wunder the
protection of QUD_Li st_Protect.

Queue Control Block

The Queue Control Block QU _QCB contains the queue message area (one or more 32-bit
unsigned words) and other fields necessary for processing queue requests.

Field Declarations

CS_NODE qu_creat ed

UNSI GNED qu_id

CHAR qu_nanme[NU_MAX_NANME]
DATA_ELEMENT qu_fixed_si ze
DATA _ELEMENT qu_fifo_suspend
DATA_ELEMENT gu_paddi ng

UNSI GNED gu_queue_si ze
UNSI GNED gu_nessages

UNSI GNED qu_nessage_si ze
UNSI GNED qu_avai l abl e
UNSI GNED_PTR qu_start

UNSI GNED_PTR qu_end

UNSI GNED_PTR qu_read

UNSI GNED_PTR qu_wite

UNSI GNED qu_t asks_wai ti ng
struct QU_SUSPEND_STRUCT *qu_urgent _|ist

struct QU SUSPEND STRUCT *qu_suspensi on_| i st

111

Nucleus PLUS Internals

Field Summary

Field Description

qu_created This is the link node structure for queues. It is
linked into the created queues list, which is a
doubly linked, circular list.

qu_id This holds the internal queue identification of
0x51554555, which is equivalent to ASCII QUEU.

qu_nane This is the user-specified, 8 character name for the

112

queue.

qu_fixed_si ze

A flag that indicates if the size of the queue is fixed
or variable.

qu_fifo_suspend

A flag that determines whether tasks suspend in fifo
or priority order.

qu_paddi ng

This is used to align the queue structure on an even
boundary. In some ports this field is not used.

gqu_gueue_si ze

This is the total size of the queue.

gu_nessages

A flag that indicates if there is a message present in
the queue.

qu_nessage_si ze

Holds the size of the queue message.

qu_avail abl e

Tells how many bytes are available in the queue.

qu_start Stores the beginning of the queue.
qu_end Stores the end of the queue.

qu_r ead This is the read pointer.
qu_wite This is the write pointer.

qu_t asks_wai ting

Indicates the number of tasks that are currently
suspended on the queue.

*qu_urgent _|ist

A pointer to the suspension list for urgent
messages.

*qu_suspension_li st

The head pointer of the queue suspension list. If no
tasks are suspended, this pointer is NULL.

Chapter 4 - Component Descriptions

Queue Suspension Structure

Tasks can suspend on empty and full queue conditions. During the suspension process a
QU _SUSPEND structure is built. This structure contains information about the task and the
task’s queue request at the time of suspension. This suspension structure is linked onto the
QCB in a doubly Ilinked, circular list and is allocated off of the
suspending task’s stack. There is one suspension block for every task suspended on the
queue.

The order of the suspension block placement on the suspend list is determined at queue
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Queue n
QCB

o task 0 < task 1 < task 2 o0 e 4 task n
QU_SUSPEND QU_SUSPEND QU_SUSPEND ¢« ¢+ ___ | QU SUSPEND

T A

A 4

A 4

Field Declarations
QU_SUSPEND_STRUCT

CS_NODE qu_suspend_l i nk
QU_QCB *qu_queue
TC_TCB *qu_suspended_t ask
UNSI GNED_PTR gu_nessage_ar ea
UNSI GNED qu_nessage_si ze
UNSI GNED qu_actual _si ze
STATUS qu_return_status
Field Summary
Field Description
qu_suspend_l i nk A link node structure for linking with other suspended
blocks. It is used in a doubly linked, circular suspension list.
*qu_queue A pointer to the queue structure.
*qu_suspended_t ask A pointer to the Task Control Block of the suspended task.
gqu_nessage_ar ea A pointer indicating where the suspended task’s message
buffer is.
qu_rnessage_si ze Stores the size of the requested message
qu_actual _si ze Stores the actual size of the message.
qu_return_status The completion status of the task suspended on the queue.

113

Nucleus PLUS Internals

Queue Functions

The following sections provide a brief description of the functions in the Queue Component
(QU). Review of the actual source code is recommended for further
information.

QUC Create Queue

This function creates a queue and then places it on the list of created queues.

STATUS QUC Create_Queue(NU QUEUE *queue_ptr, CHAR *nane,
VO D *start_address, UNSI GNED queue_si ze,
OPTI ON nmessage_t ype, UNSI GNED nessage_si ze,
OPTI ON suspend_type)

Functions Called

CSC Pl ace_On_Li st

[H C_Make History_ Entry]
[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

QUC Del et e_Queue

This function deletes a queue and removes it from the list of created queues. All tasks
suspended on the queue are resumed. Note that this function does not free the memory
associated with the queue. That is the responsibility of the application.

STATUS QUC Del et e_Queue(NU_QUEUE *queue_ptr)

Functions Called

CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System

114

Chapter 4 - Component Descriptions

QUC _Send_To_Queue

This function sends a message to the specified queue. The caller determines the message
length. If there are one or more tasks suspended on the queue for a message, the message is
copied into the message area of the first waiting task. If the task’s request is satisfied, it is
resumed. Otherwise, if the queue cannot hold the message, suspension of the calling task is
an option of the caller.

STATUS QUC _Send_To_Queue(NU_QUEUE *queue_ptr, VO D
*message, UNSI GNED si ze,
UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
CSC_Renobve_From Li st

[H C_Make History_Entry]
TCC_Resune_Task
TCC_Suspend_Task

QUC Recei ve_From Queue

This function receives a message from the specified queue. The caller specifies the size of
the message. If there is a message currently in the queue, the message is removed from the
queue and placed in the caller’s area. Suspension is possible if the request cannot be
satisfied.

STATUS QUC Recei ve_From Queue(NU_QUEUE *queue_ptr, VO D
*message, UNSI GNED si ze,
UNSI GNED *act ual _si ze,
UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task
TCC_Suspend_Task

115

Nucleus PLUS Internals

QUC _d eanup

This function is responsible for removing a suspension block from a queue. It is not called
unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VO D QUC d eanup(VA D *i nformation)

Functions Called

CSC_Renove_From Li st

QUCE_Create_Queue

This function performs error checking on the parameters supplied to the queue create
function.

STATUS QUCE_Creat e_Queue(NU_QUEUE *queue_ptr, CHAR *nane,
VO D *start_address, UNSI GNED
queue_si ze, OPTI ON nessage_t ype,
UNSI GNED nessage_si ze, OPTI ON suspend_t ype)

Functions Called

QUC _Create_Queue

QUCE _Del et e_Queue

This function performs error checking on the parameter supplied to the queue delete
function.

STATUS QUCE_Del et e_Queue(NU_QUEUE *queue_ptr)

Functions Called
QUC _Del et e_Queue

116

Chapter 4 - Component Descriptions

QUCE_Send_To_Queue

This function performs error checking on the parameters supplied to the send message to
queue function.

STATUS QUCE_Send_To_Queue(NU_QUEUE *queue_ptr, VO D
*message, UNSI GNED si ze,
UNSI GNED suspend)

Functions Called

QUC_Send_To_Queue
TCCE_Suspend_Err or

QUCE_Recei ve_From Queue

This function performs error checking on the parameters supplied to the receive
message from queue function.

STATUS QUCE_Recei ve_From Queue(NU_QUEUE *queue_ptr,
VO D *nessage, UNSI GNED
si ze, UNSI GNED*act ual _si ze,
UNSI GNED suspend)

Functions Called

QUC _Recei ve_From Queue
TCCE_Suspend_Err or

QUF_Est abl i shed _Queues

This function returns the current number of established queues. Queues previously deleted
are no longer considered established.

UNSI GNED QUF_Est abl i shed_Queues (VA D)

Functions Called

[TCT_Check_St ack]

117

Nucleus PLUS Internals

QUF_Queue_I nformation

This function returns information about the specified queue. However, if the supplied queue
pointer is invalid, the function simply returns an error status.

STATUS QUF_Queue_| nformati on(NU_QUEUE*queue_ptr, CHAR *nane,
VO D **start_address, UNSI GNED*queue_si ze,
UNSI GNED *avai | abl e, UNSI GNED *nessages,
OPTI ON *nessage_type, UNSI GNED *nessage_si ze,
OPTI ON *suspend_type, UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

QUF_Queue Pointers

Builds a list of queue pointers, starting at the specified location. The number of queue
pointers placed in the list is equivalent to the total number of queues or the maximum
number of pointers specified in the call.

UNSI GNED QUF_Queue_Poi nt er s(NU_QUEUE **poi nter_li st,
UNSI GNED maxi mum_poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

118

Chapter 4 - Component Descriptions

QU Initialize

This function initializes the data structures that control the operation of the Queue
Management component. There are no queues initially.

VO D QU _Initialize(VO D)
Functions Called

None

QUS_Reset _Queue

This function resets the specified queue back to the original state. Any messages in the
queue are discarded. Also, any tasks currently suspended on the queue are resumed with the
reset status.

STATUS QUS Reset _Queue(NU_QUEUE *queue_ptr)

Functions Called

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_System Prot ect
TCT_Unpr ot ect

119

Nucleus PLUS Internals

QUS Send_To_Front O _Queue

This function sends a message to the front of the specified message queue. The
caller determines the message length. If there are any tasks suspended on the queue for a
message, the message is copied into the message area of the first waiting task and that task is
resumed. If there is enough room in the queue, the message is copied in front of all other
messages. If there is not enough room in the queue, suspension of the caller is possible.

STATUS QUS_Send_To_Front _O _Queue(NU_QUEUE *queue_ptr, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st
CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task
TCC_Suspend_Task

[TCT_Check_St ack]

QUS Broadcast _To_Queue

This function sends a message to all tasks waiting for a message from the specified queue. If
there are no tasks waiting for a message the service performs like a standard send request.

STATUS QUS_Broadcast _To_Queue(NU_QUEUE *queue_ptr, VO D *nmessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called
CSC Pl ace_On_Li st
CSC Priority_Place_On_Li st
CSC_Renove_From Li st
[H C_Make History_ Entry]
TCC_Resune_Task
TCC_Suspend_Task

120

Chapter 4 - Component Descriptions

QUSE_Reset _Queue

This function performs error checking on the parameter supplied to the queue reset function.
STATUS QUSE_Reset _Queue(NU_QUEUE *queue_ptr)

Functions Called
QUS_Reset _Queue

QUSE_Send_To_Front O _Queue

This function performs error checking on the parameters supplied to the send message to
front of queue function.

STATUS QUSE_Send_To_Front _Of _Queue(NU_QUEUE *queue_ptr, UNSI GNED si ze,
UNSI GNED suspend)

Functions Called

QUS_Send_To_Front _O _Queue
TCCE_Suspend_Err or

QUSE_Br oadcast _To_Queue

This function performs error checking on the parameters supplied to the broadcast message
to queue function.

STATUS QUSE _Broadcast _To_Queue(NU _QUEUE *queue_ptr, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

QUS_Broadcast _To_Queue
TCCE_Suspend_Error

Pipe Component (Pl)

The Pipe Component (PI) is responsible for processing all Nucleus PLUS pipe
facilities. A Nucleus PLUS pipe is a mechanism for tasks to communicate between each
other. Each pipe is capable of holding multiple messages. A pipe message consists of one
or more bytes. Tasks may suspend while waiting for a message from an empty pipe.
Conversely, tasks may suspend while trying to send to a pipe that is in a full condition.
Pipes are dynamically created and deleted by the user. Please see Chapter 3 of the Nucleus
PLUS Reference Manual for more detailed information about pipes.

121

Nucleus PLUS Internals

Pipe Files

The Pipe Component (PI) consists of nine files. Each source file of the Pipe
Component is defined below.

File Description

Pl _DEFS. H This file contains constants and data structure definitions specific to the
PIL.

Pl _EXTR H All external interfaces to the PI are defined in this file.

PID.C Global data structures for the PI are defined in this file.

PI1.C This file contains the initialization function for the PI.

PIF.C This file contains the information gathering functions for the PI.

PIC. C This file contains all of the core functions of the PI. Functions that
handle basic send-to-pipe and receive-from-pipe services are defined in
this file.

PIS. C This file contains supplemental functions of the PI. Functions contained
in this file are typically used less frequently than the core functions.

PICE C This file contains the error checking function interfaces for the core
functions defined in PI C. C.

PISE. C This file contains the error checking function interfaces for the
supplemental functions defined in Pl S. C.

122

Chapter 4 - Component Descriptions

Pipe Data Structures

Created Pipe List

Nucleus PLUS pipes may be created and deleted dynamically. The Pipe Control Block
(PCB) for each created pipe is kept on a doubly linked, circular list. Newly created pipes are
placed at the end of the list, while deleted pipes are completely removed from the list. The
head pointer of this list is Pl D_Cr eat ed_Pi pes_Li st.

PID_Created_Pipes_List

PCB PCB PCB N PCB

Created Pipe List Protection

Nucleus PLUS protects the integrity of the Created Pipes List from competing tasks and/or
HISRs. This is done by using an internal protection structure called Pl D_Li st _Prot ect .
All pipe creation and deletion is done under the protection of PI D_Li st _Pr ot ect .

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting

Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.
tc_thread_waiting | A flag indicating that one or more threads are waiting for the
protection.

123

Nucleus PLUS Internals

Total Pipes

The total number of currently created Nucleus PLUS pipes is contained in the variable
PI D_Tot al _Pi pes. The contents of this variable correspond to the number of PCBs on the
created list. Manipulation of this wvariable is also done under the
protection of Pl D_Li st_Protect.

Pipe Control Block

The Pipes Control Block PI _PCB contains the pipe message area (1 or more bytes) and
other fields necessary for processing pipe requests.

Field Declarations

CS_NODE pi _created

UNSI GNED pi _id

CHAR pi _nanme[NU_MAX_NANME]
DATA_ELEMENT pi _fixed_size
DATA _ELEMENT pi _fifo_suspend
DATA _ELEMENT pi _paddi ng[PAD_2]
UNSI GNED pi _pi pe_size

UNSI GNED pi _message_si ze
UNSI GNED pi _avail abl e
BYTE_PTR pi _start

BYTE_PTR pi _end

BYTE_PTR pi _read

BYTE_PTR pi_wite

UNSI GNED pi _tasks_waiting
UNSI GNED pi _messages

struct PlI_SUSPEND STRUCT *pi _urgent _li st
struct Pl _SUSPEND STRUCT *pi _suspension_li st

124

Chapter 4 - Component Descriptions

Field Summary

Field Description

pi _created This is the link node structure for pipes. It is linked
into the created pipes list, which is a doubly linked,
circular list.

pi_id This holds the internal pipe identification of
0x50495045, which is equivalent to ASCII PIPE.

pi _nane This is the user-specified, 8 character name for the

pipe.

pi _fixed_size

A flag that indicates if the size of the pipe is fixed or
variable.

pi _fifo_suspend

A flag that determines whether tasks suspend in fifo
or priority order.

pi _paddi ng This is used to align the pipe structure on an even
boundary. In some ports this field is not used.
pi _pi pe_si ze This is the total size of the pipe.

pi _nessages

A flag that indicates if there is a message present in
the pipe.

pi _nessage_si ze

Holds the size of the message.

pi _avail abl e

Tells how many bytes are available in the pipe.

pi _start Stores the beginning of the pipe.
pi _end Stores the end of the pipe.

pi _read This is the read pointer.
pi_wite This is the write pointer.

pi _tasks_waiting

Indicates the number of tasks that are currently
suspended on the pipe.

*pi _urgent _|ist

A pointer to the suspension list for urgent messages.

*pi _suspension_li st

The head pointer of the pipe suspension list. If no
tasks are suspended, this pointer is NULL.

125

Nucleus PLUS Internals

Pipe Suspension Structure

Tasks can suspend on empty and full pipe conditions. During the suspension process a
Pl _SUSPEND structure is built. This structure contains information about the task and the
task’s pipe request at the time of suspension. This suspension structure is linked onto the
PCB in a doubly linked, circular list and is allocated off of the suspending task’s stack.
There is one suspension block for every task suspended on the pipe.

The order of the suspension block placement on the suspend list is determined at pipe
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Pipe n
PCB

task 0 < task 1 < task 2 L task n
PI_SUSPEND »| PI_SUSPEND »| PI_SUSPEND 4 * * | PISUSPEND

T A

Field Declarations

CS_NODE pi _suspend_l i nk

Pl _PCB *pi _pi pe

TC_TCB *pi _suspended_t ask
BYTE_PTR pi _nmessage_area
UNSI GNED pi _nmessage_si ze
UNSI GNED pi _actual _si ze

STATUS pi _return_status
Field Summary

Field Description

pi _suspend_| i nk A link node structure for linking with other suspended
blocks. It is used in a doubly linked, circular suspension
list.

* pi _pi pe A pointer to the pipe structure.

*pi _suspended_t ask A pointer to the Task Control Block of the suspended task.

pi _nessage_area A pointer indicating where the suspended task’s message
buffer is.

pi _nessage_si ze Stores the size of the requested message

pi _actual _size Stores the actual size of the message.

pi _return_status The completion status of the task suspended on the pipe.

Pipe Functions

The following sections provide a brief description of the functions in the Pipe
Component (PI). Review of the actual source code is recommended for further
information.

126

Chapter 4 - Component Descriptions

PI C Create Pipe

Creates a pipe and then places it on the list of created pipes.

STATUS PIC Create_Pi pe(NU_PI PE *pi pe_ptr, CHAR *nanme, VO D
*start_address, UNSI GNED pi pe_si ze,
OPTI ON nmessage_t ype, UNSI GNED nessage_si ze,
OPTI ON suspend_t ype)

Functions Called

CSC Pl ace_On_Li st

[H C_Make History_Entry]
[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

Pl C Del et e_Pi pe

Deletes a pipe and removes it from the list of created pipes. All tasks suspended on the pipe
are resumed. Note that this function does not free the memory associated with the pipe.
That is the responsibility of the application.

STATUS PI C Del ete_Pi pe(NU_PI PE *pi pe_ptr)
Functions Called

CSC_Renobve_From Li st

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System

127

Nucleus PLUS Internals

PI C_Send_To_Pi pe

This function sends a message to the specified pipe. The caller determines the message
length. If there are one or more tasks suspended on the pipe for a message, the message is
copied into the message area of the first waiting task. If the task’s request is satisfied, it is
resumed. Otherwise, if the pipe cannot hold the message, suspension of the calling task is an
option of the caller.

STATUS PI C _Send_To_Pi pe(NU_PI PE *pi pe_ptr, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
CSC_Renobve_From Li st

[H C_Make History_Entry]
TCC_Resune_Task
TCC_Suspend_Task

Pl C_Recei ve_From Pi pe

This function receives a message from the specified pipe. The caller specifies the size of the
message. If there is a message currently in the pipe, themessage is removed from the pipe
and placed in the caller’s area. Suspension is possible if the request cannot be satisfied.

STATUS Pl C Recei ve_From Pi pe(NU_PI PE *pi pe_ptr, VO D *nessage,
UNSI GNED si ze, UNSI GNED *act ual _si ze,
UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st
CSC_Renove_From Li st
[H C_Make History_ Entry]
TCC_Resune_Task
TCC_Suspend_Task

TCC Task_Priority
TCT_Check_St ack]
TCT_Control _To_System
TCT_Current _Thread
TCT_System Prot ect
TCT_Unpr ot ect

128

Chapter 4 - Component Descriptions

Pl C_C eanup

This function is responsible for removing a suspension block from a pipe. It is not called
unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VO D PIC deanup(VA D *information)

Functions Called

CSC_Renove_From Li st

Pl CE _Create_Pipe

This function performs error checking on the parameters supplied to the pipe create function.

STATUS PI CE _Create_Pi pe(NU_PI PE *pi pe_ptr, CHAR *nanme, VO D *start_address,
UNSI GNED pi pe_si ze, OPTI ON nessage_t ype,
UNSI GNED nessage_si ze, OPTI ON suspend_type)

Functions Called
Pl C Create_Pi pe

129

Nucleus PLUS Internals

Pl CE Del et e_Pi pe

This function performs error checking on the parameter supplied to the pipe delete function.
STATUS PI CE_Del et e_Pi pe(NU_PI PE *pi pe_ptr)

Functions Called
Pl C _Del et e_Pi pe

Pl CE_Send_To_Pi pe

This function performs error checking on the parameters supplied to the send message to
pipe function.

STATUS PI CE_Send_To_Pi pe(NU_PI PE *pi pe_ptr, VO D *nmessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

Pl C_Send_To_Pi pe
TCCE_Suspend_Err or

130

Chapter 4 - Component Descriptions

Pl CE_Recei ve_From Pi pe

This function performs error checking on the parameters supplied to the receive message
from pipe function.

STATUS Pl CE_Recei ve_From Pi pe(NU_PI PE *pi pe_ptr, VO D *nessage,
UNSI GNED si ze, UNSI GNED *act ual _si ze,
UNSI GNED suspend)

Functions Called

Pl C_Recei ve_From Pi pe
TCCE_Suspend_Err or

Pl F_Est abl i shed_Pi pes

Returns the current number of established pipes. Pipes previously deleted are no longer
considered established.

UNSI GNED Pl F_Est abl i shed_Pi pes(VVA D)

Functions Called
[TCT_Check_St ack]

131

Nucleus PLUS Internals

Pl F_Pi pe_Information

Returns information about the specified pipe. However, if the supplied pipe pointer is
invalid, the function simply returns an error status.
STATUS PI F_Pi pe_| nformati on(NU_PI PE *pi pe_ptr, CHAR *nane, VO D start_address,
UNSI GNED *pi pe_si ze, UNSI GNED *avai | abl e,
UNSI GNED *nessages, OPTI ON *nessage_t ype,
UNSI GNED *nessage_si ze, OPTI ON *suspend_t ype,
UNSI GNED *t asks_waiting, NU TASK **first_task)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

Pl F_Pi pe_Poi nters

Builds a list of pipe pointers, starting at the specified location. The number of pipe pointers
placed in the list is equivalent to the total number of pipes or the maximum number of
pointers specified in the call.

UNSI GNED Pl F_Pi pe_Poi nters(NU_PI PE **poi nter_list, UNSI GNED nmaxi mum poi nt ers)
Functions Called

[TCT_Check_St ack]
TCT_Prot ect
TCT_Unpr ot ect

132

Chapter 4 - Component Descriptions

Pl Initialize

This function initializes the data structures that control the operation of the Pipe
Component. There are no pipes initially.

VO D PlI_Initialize(VO D)
Functions Called

None

PI S _Reset _Pi pe

This function resets the specified pipe back to the original state. Any messages in the pipe
are discarded. Also, any tasks currently suspended on the pipe are resumed with the reset
status.

STATUS PIS Reset_Pi pe(NU_PI PE *pi pe_ptr)
Functions Called

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_System Prot ect
TCT_Unpr ot ect

133

Nucleus PLUS Internals

PIS Send _To _Front O _Pi pe

This function sends a message to the front of the specified message pipe. The caller
determines the message length. If there are any tasks suspended on the pipe for a message,
the message is copied into the message area of the first waiting task and that task is resumed.
If there is enough room in the pipe, the message is copied in front of all other messages. If
there is not enough room in the pipe, suspension of the caller is possible.

STATUS PIS Send_To_Front _O _Pi pe(NU_PI PE *pi pe_ptr, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st
CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task
TCC_Suspend_Task

Pl S Broadcast _To_Pi pe

This function sends a message to all tasks waiting for a message from the specified pipe. If
there are no tasks waiting for a message the service performs like a standard send request.

STATUS PI S_Broadcast _To_Pi pe(NU_PI PE *pi pe_ptr,
VO D *nessage, UNSI GNED si ze,
UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
CSC_Renpve_From Li st

[H C_Make_History Entry]
TCC_Resune_Task
TCC_Suspend_Task

134

Chapter 4 - Component Descriptions

Pl SE Reset Pi pe

This function performs error checking on the parameter supplied to the pipe reset function.
STATUS Pl SE Reset _Pi pe(NU_PI PE *pi pe_ptr)

Functions Called
Pl S Reset _Pi pe

Pl SE_Send_To_Front _O _Pi pe

This function performs error checking on the parameters supplied to the send message to
front of pipe function.

STATUS PI SE_Send_To_Front _O _Pi pe(NU_PI PE *pi pe_ptr, VO D *nmessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

PI S Send_To_Front _O _Pi pe
TCCE_Suspend_Err or

135

Nucleus PLUS Internals

Pl SE Broadcast To_Pi pe

This function performs error checking on the parameters supplied to the broadcast message
to pipe function.

STATUS Pl SE _Broadcast _To_Pi pe(NU_PI PE *pi pe_ptr, VO D *nessage,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

Pl S_Broadcast _To_Pi pe
TCCE_Suspend_Error

Semaphore Component (SM)

The Semaphore Component (SM) is responsible for processing all Nucleus PLUS
semaphore facilities. A Nucleus PLUS semaphore is a mechanism to synchronize the
execution of various tasks in an application. Nucleus PLUS provides counting
semaphores that range in value from 0 to 4,294,967,294. Tasks may suspend while waiting
for a non-zero semaphore value. Semaphores are dynamically created and deleted by the
user. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about semaphores.

136

Chapter 4 - Component Descriptions

Semaphore Files

The Semaphore Component (SM) consists of nine files. Each source file of the
Semaphore Component is defined below.

File Description
SM DEFS. H This file contains constants and data structure definitions
B specific to the SM.
SM EXTR H All external interfaces to the SM are defined in this file.
SMD. C Global data structures for the SM are defined in this file.
SM.C This file contains the initialization function for the SM.
SMF. C This file contains the information gathering functions for the
SM.
SMC. C This file contains all of the core functions of the SM.

Functions that handle basic obtain-semaphore and release-
semaphore services are defined in this file.

SMs. C This file contains supplemental functions of the SM.
Functions contained in this file are typically used less
frequently than the core functions.

SMCE. C This file contains the error checking function interfaces for
the core functions defined in SMC. C.
SMBE. C This file contains the error checking function interfaces for

the supplemental functions defined in SVS. C.

137

Nucleus PLUS Internals

Semaphore Data Structures

Created Semaphore List

Nucleus PLUS semaphores may be created and deleted dynamically. The Semaphore
Control Block (SCB) for each created semaphore is kept on a doubly linked, circular list.
Newly created semaphores are placed at the end of the list, while deleted
semaphores are completely removed from the list. The head pointer of this list is
SMD_Cr eat ed_Semaphores_Li st.

SMD_Created_Semaphores_List

SCB] scB | scB N SCB

Created Semaphore List Protection

Nucleus PLUS protects the integrity of the Created Semaphores List from competing tasks
and/or HISRs. This is done by wusing an internal protection structure called
SMD_List_Protect. All semaphore creation and deletion is done under the protection of
SMD _List_Protect.

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting

Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for the
protection

138

Chapter 4 - Component Descriptions

Total Semaphores

The total number of currently created Nucleus PLUS semaphores is contained in the variable
SMD_Tot al _Semaphor es. The contents of this variable correspond to the number of SCBs
on the created list. Manipulation of this variable is also done under the protection of
SMD _List_Protect.

Semaphore Control Block

The Semaphores Control Block SM SCB contains the semaphore count and other fields
necessary for processing semaphore requests.

Field Declarations

CS_NODE sm created
UNSI GNED sm.id
CHAR sm_nane[NU_MAX_NAME]
UNSI GNED sm senmaphor e_count
DATA _ELEMENT sm fifo_suspend
DATA_ELEMENT sm _paddi ng[PAD_1]
UNSI GNED smtasks_waiting
struct SM SUSPEND _STRUCT *sm suspension_li st
Field Summary
Field Description
sm created This is the link node structure for semaphores. It is
linked into the created semaphores list, which is a
doubly linked, circular list.
smid This holds the internal semaphore identification of
0x53454D41, which is equivalent to ASCII SEMA.
sm_nanme This is the user-specified, 8 character name for the
semaphore.
sm semaphor e_count Stores the current count of the semaphore.
smfifo_suspend A flag that determines whether tasks suspend in fifo or
priority order.
sm _paddi ng This is used to align the semaphore structure on an even
boundary.
In some ports this field is not used.
smtasks_waiting Indicates the number of tasks that are currently
suspended on the semaphore.
*sm suspensi on_| i st | The head pointer of the semaphore suspension list. If no
tasks are suspended, this pointer is NULL.

139

Nucleus PLUS Internals

Semaphore Suspension Structure

Tasks can suspend on a semaphore whose current count is zero. During the suspension
process a SM SUSPEND_STRUCT structure is built. This structure contains information
about the task and the task’s semaphore request at the time of suspension. This suspension
structure is linked onto the SCB in a doubly linked, circular list and is allocated from the
suspending task’s stack. There is one suspension block for every task suspended on the
semaphore.

The order of the suspension block placement on the suspend list is determined at semaphore
creation. If a FIFO suspension was selected, the suspension block is added to the end of the
list. Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks for tasks of equal or higher priority.

Semaphore n
SCB

task 0 < task 1 < task 2 e v 4 task n
"] SM_SUSPEND »| SM_SUSPEND SM_SUSPEND ¢ * * | SM SUSPEND

T A

Field Declarations

CS_NODE sm suspend_l i nk
SM SCB *sm senmaphore
TC_TCB *sm suspended_t ask
STATUS sm return_status

Field Summary

Field Description

sm suspend_| i nk A link node structure for linking with other suspended
blocks. It is used in a doubly linked, circular suspension list.

*sm semaphore A pointer to the semaphore structure.

*sm suspended_t ask A pointer to the Task Control Block of the suspended task.

sm.return_status The completion status of the task suspended on the
semaphore

140

Chapter 4 - Component Descriptions

Semaphore Functions

The following sections provide a brief description of the functions in the Semaphore
Component (SM). Review of the actual source code is recommended for further
information.

SMC _Cr eat e_Sermaphor e

This function creates a semaphore and places it on the list of created semaphores.

STATUS SMC Creat e_Semaphor e(NU_SEMAPHORE *semaphore_ptr, CHAR *nane,
UNSI GNED i nitial _count, OPTION suspend_type)

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History_ Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

SMC _Del et e_Sermaphor e

This function deletes a semaphore and removes it from the list of created semaphores. All
tasks suspended on the semaphore are resumed. Note that this function does not free the
memory associated with the semaphore control block. That is the responsibility of the
application.

STATUS SMC Del et e_Semaphor e(NU_SEMAPHORE *semaphore_ptr)

Functions Called

CSC_Renobve_From Li st

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System

141

Nucleus PLUS Internals

SMC_ (ot ai n_Semaphor e

This function obtains an instance of the semaphore. An instance corresponds to
decrementing the counter by one. If the counter is greater than zero at the time of this call,
this function can be completed immediately. Otherwise, suspension is possible.

STATUS SMC (bt ai n_Senmaphor e(NU_SEMAPHORE *senmaphore_ptr, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
[H C_Make History_Entry]
TCC_Suspend_Task

TCC Task_Priority

[TCT_Check_St ack]
TCT_Current _Thread
TCT_System Prot ect
TCT_Unpr ot ect

SMC Rel ease_Senaphor e

This function releases a previously obtained semaphore. If one or more tasks are waiting,
the first task is given the released instance of the semaphore. Otherwise, the semaphore
instance counter is simply incremented.

STATUS SMC Rel ease_Senmaphor e(NU_SEMAPHORE *senaphore_ptr)

Functions Called

CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_System Prot ect
TCT_Unpr ot ect

142

Chapter 4 - Component Descriptions

SMC _Cl eanup

This function is responsible for removing a suspension block from a semaphore. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as
at suspension time) is already in effect.

VO D SMC d eanup(VA D *i nfornati on)

Functions Called

CSC_Renove_From Li st

SMCE_Cr eat e_Senaphor e

This function performs error checking on the parameters supplied to the create
semaphore function.

STATUS SMCE_Cr eat e_Semaphor e(NU_SEMAPHORE *semaphore_ptr, CHAR *nane,
UNSI GNED i nitial _count, OPTION suspend_type)

Functions Called

SMC _Cr eat e_Senaphor e

SMCE _Del et e_Senaphor e

This function performs error checking on the parameters supplied to the delete
semaphore function.

STATUS SMCE_Del et e_Semaphor e(NU_SEMAPHORE *semaphore_ptr)

Functions Called
SMC _Del et e_Semaphor e

143

Nucleus PLUS Internals

SMCE_(bt ai n_Senmaphor e

This function performs error checking on the parameters supplied to the obtain
semaphore function.

STATUS SMCE Obt ai n_Semaphor e(NU_SEMAPHORE *semaphore_ptr, UNSI GNED suspend)
Functions Called

SMC_(not ai n_Semaphor e

TCCE_Suspend_Err or

SMCE_Rel ease_Semaphor e

This function performs error checking on the parameters supplied to the release
semaphore function.

STATUS SMCE Rel ease_Senmaphor e(NU_SEMAPHORE *senmaphore_ptr)

Functions Called

SMC_Rel ease_Semaphore

SMF_Est abl i shed_Senaphor es

This function returns the current number of established semaphores. Semaphores previously
deleted are no longer considered established.

UNSI GNED SMF_Est abl i shed_Senmaphor es(VA D)

Functions Called
[TCT_Check_St ack]

144

Chapter 4 - Component Descriptions

SMF_Semaphor e_Poi nters

Builds a list of semaphore pointers, starting at the specified location. The number of

semaphore pointers placed in the list is equivalent to the total number of semaphores or the
maximum number of pointers specified in the call.

UNSI GNED SMF_Senmaphor e_Poi nt er s(NU_SEMAPHORE **poi nter _|i st,
UNSI GNED mexi mum_poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

SMF_Semaphor e_I nformati on

This function returns information about the specified semaphore. However, if the supplied
semaphore pointer is invalid, the function simply returns an error status.

STATUS SM_Senaphore_I nformation (NU_SEMAPHORE *semaphore_ptr,

CHAR *name, UNSI GNED* current _count,
OPTI ON *suspend_t ype,

UNSI GNED t asks_wai ti ng,

NU_TASK **first_task)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

145

Nucleus PLUS Internals

SM Initialize

This function initializes the data structures that control the operation of the Semaphore
Component. There are no semaphores initially.

VO D SM _Initialize(Va D)

Functions Called
None

SM5_Reset _Senmaphor e

This function resets a semaphore back to the initial state. All tasks suspended on the
semaphore are resumed with the reset completion status.

STATUS SMS_Reset _Semaphor e(NU_SEMAPHORE *semaphore_ptr,
UNSI GNED i nitial _count)

Functions Called

[H C_Make_History_ Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_System Protect
TCT_Unpr ot ect

146

Chapter 4 - Component Descriptions

SMBE_Reset _Semaphor e

This function performs error checking on the parameters supplied to the reset
semaphore function.

STATUS SMSE Reset _Senmaphor e(NU_SEMAPHORE *semaphore_ptr,
UNSI GNED i nitial _count)

Functions Called

SM5_Reset _Semaphor e

Event Group Component (EV)

The Event Group Component (EV) is responsible for processing all Nucleus PLUS event
group facilities. A Nucleus PLUS event is a mechanism to indicate that a certain system
event has occurred. An event is represented by a single bit in an event group. This bit is
called an event flag. There are 32 event flags in each event group. Tasks may suspend while
waiting for a particular set of event flags. Event groups are
dynamically created and deleted by the user. Please see Chapter 3 of the Nucleus PLUS
Reference Manual for more detailed information about events.

Event Group Files

The Event Group Component (EV) consists of seven files. Each source file of the Event
Group Component is defined below.

File Description

EV_DEFS. H This file contains constants and data structure definitions specific to
the EV.

EV_EXTR H All external interfaces to the EV are defined in this file.

EVD. C Global data structures for the EV are defined in this file.

EVI.C This file contains the initialization function for the EV.

EVF. C This file contains the information gathering functions for the EV.

EVC. C This file contains all of the core functions of the EV. Functions that
handle basic set-event and retrieve-event services are defined in this
file.

EVCE. C This file contains the error checking function interfaces for the core
functions defined in EVC. C.

147

Nucleus PLUS Internals

Event Group Data Structures

Created Event Group List

Nucleus PLUS events may be created and deleted dynamically. The Event Group Control
Block (GCB) for each created event group is kept on a doubly linked, circular list. Newly
created event groups are placed at the end of the list, while deleted event groups are
completely removed from the list. The head pointer of this list s
EVD_Creat ed_Events_Group_Li st.

EVD_Created_Events_Group_List

GCB GCB GCB Lo GCB

Created Event Group List Protection

Nucleus PLUS protects the integrity of the Created Events Group List from competing tasks
and/or HISRs. This is done by wusing an internal protection structure called
EVD _Li st_Protect. All event group creation and deletion is done under the protection of
EVD_Li st _Protect.

TC TCB *tc_tcb_pointer
UNSI GNED tc_thread_waiting

Functions Called

Field Description

tc_tch_pointer Identifies the thread that currently has the protection.

tc_thread_waiting A flag indicating that one or more threads are waiting for
protection

148

Chapter 4 - Component Descriptions

Total Event Groups

The total number of currently created Nucleus PLUS event groups is contained in the
variable EVD Total _Event _Groups. The contents of this variable correspond to the
number of GCBs on the created list. Manipulation of this variable is also done under the
protection of EVD Li st _Protect.

Event Group Control Block

The Event Group Control Block EV_GCB contains the current event flags and other fields
necessary for processing event requests.

Field Declarations

CS_NODE ev_created

UNSI GNED ev_id

CHAR ev_nanme[NU_MAX_NANME]

UNSI GNED ev_current _events

UNSI GNED ev_tasks_waiting

struct EV_SUSPEND_ STRUCT *ev_suspension_| i st

Field Summary

Field Description

ev_created This is the link node structure for events. It is linked
into the created events group list, which is a doubly
linked, circular list.

ev_id This holds the internal event group identification of
0x45564E54, which is equivalent to ASCII EVNT.

ev_nane This is the user-specified, 8 character name for the
event group.

ev_current_events Contains the current event flags.

ev_tasks_waiting Indicates the number of tasks that are currently
suspended on an event group.

*ev_suspension_|i st The head pointer of the event group suspension list.
If no tasks are suspended, this pointer is NULL.

149

Nucleus PLUS Internals

Event Group Suspension Structure

Tasks can suspend when an event group does not match the user specified combination of
event flags. During the suspension process the EV_SUSPEND_STRUCT structure is built.
This structure contains information about the task and the task’s event group request at the
time of suspension. This suspension structure is linked onto the GCB in a doubly linked,
circular list and is allocated off of the suspending task’s stack. There is one suspension
block for every task suspended on the event group.

Event Group n
GCB

task 0 « task 1 « task 2 o v e 4/ task n
?| EV_SUSPEND » EV_SUSPEND » EV_SUSPEND + & < ___ | EV SUSPEND

T 4

Field Declarations

CS_NCDE ev_suspend_l i nk
EV_GCB *ev_event _group

UNSI GNED ev_requested_events
DATA_ELEMENT ev_operation
DATA_ELEMENT ev_paddi ng[PAD_1]
TC_TCB *ev_suspended_t ask
STATUS ev_return_status
UNSI GNED ev_actual _events

150

Chapter 4 - Component Descriptions

Field Summary

Field Description

ev_suspend_| i nk A link node structure for linking with other
suspended blocks. It is used in a doubly-linked
circular suspension list

*em event _group A pointer to the event group structure.

ev_requested_events The event group that has been requested.

ev_operation The type of operation that is requested on the event
group. This is typically some sort of AND/OR
combination.

ev_paddi ng This is used to align the suspend event group
structure on an even boundary. In some ports this
field is not used.

*ev_suspended_t ask A pointer to the Task Control Block of the
suspended task.

ev_return_status The completion status of the task suspended on the
event group.

ev_actual _events The set of actual event flags returned by the
request.

Event Group Functions

The following sections provide a brief description of the functions in the Event Group
Component (EV). Review of the actual source code is recommended for further
information.

EVC Create_Event G oup

Creates an event group and then places it on the list of created event groups.
STATUS EVC Create_Event _G oup(NU_EVENT_GROUP *event _group_ptr, CHAR *nane)

Functions Called

CSC Pl ace_On_Li st

[H C_Make History_ Entry]
[TCT_Check_St ack]

TCT_Pr ot ect

TCT_Unpr ot ect

151

Nucleus PLUS Internals

EVC Del ete_Event Group

Deletes an event group and removes it from the list of created event groups. All tasks
suspended on the event group are resumed. Note that this function does not free the memory
associated with the event group control block. That is the responsibility of the application.

STATUS EVC Del et e_Event _G oup(NU_EVENT_GROUP *event _group_ptr)

Functions Called

CSC_Renove_From Li st

[H C_Make History_ Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_Pr ot ect

TCT_Set _Current _Protect
TCT_System Prot ect
TCT_Syst em Unpr ot ect
TCT_Unpr ot ect

EVC Set Events

Sets event flags within the specified event flag group. Event flags may be ANDed or ORed
against the current events of the group. Tasks suspended on a group are resumed when the
requested event is satisfied.

STATUS EVC Set Event s(NU_EVENT_GROUP *event _group_ptr,
UNSI GNED events, OPTI ON operation)

Functions Called

CSC_Renpve_From Li st

[H C_Make_History_ Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_System Protect
TCT_Unpr ot ect

152

Chapter 4 - Component Descriptions

EVC Retrieve Events

Retrieves various combinations of event flags from the specified event group. If the group
does not contain the necessary flags, suspension of the calling task is possible.

STATUS EVC Retrieve_Events (NU_EVENT_GROUP *event _group_ptr,
UNSI GNED r equest ed_event s, OPTI ON operati on,
UNSI GNED *retrieved_events, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History Entry]
TCC_Suspend_Task

[TCT_Check_St ack]
TCT_Current _Thread
TCT_System Protect
TCT_Unpr ot ect

EVC _C eanup

This function is responsible for removing a suspension block from an event group. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as
at suspension time) is already in effect.

VO D EVC d eanup(VA D *i nformati on)

Functions Called

CSC_Renove_From Li st

153

Nucleus PLUS Internals

EVCE Create_Event G oup

This function performs error checking on the parameters supplied to the create event group
function.

STATUS EVCE Create_Event G oup(NU_EVENT_GROUP *event _group_ptr, CHAR *nane)

Functions Called
EVC Create_Event _G oup

EVCE Del et e_Event _G oup

This function performs error checking on the parameters supplied to the delete event group
function.

STATUS EVCE Del et e_Event _G oup(NU_EVENT_CGROUP *event _group_ptr)

Functions Called
EVC Del et e_Event _G oup

EVCE Set Events

This function performs error checking on the parameters supplied to the set events group
function.

STATUS EVCE_Set _Event s(NU_EVENT_GROUP *event _group_ptr,
UNSI GNED events, OPTI ON operati on)

Functions Called
EVC _Set _Events

EVCE Retrieve Events

This function performs error checking on the parameter supplied to the retrieve events
function.

STATUS EVCE Retrieve_Event s(NU_EVENT_GROUP *event _group_ptr,
UNSI GNED r equest ed_event s, OPTI ON operati on,
UNSI GNED *retrieved_events, UNSI GNED suspend)

Functions Called

EVC Retrieve_Events
TCCE_Suspend_Error

154

Chapter 4 - Component Descriptions

EVF _Establi shed_Event Groups

Returns the current number of established event groups. Event groups previously deleted are
no longer considered established.

UNSI GNED EVF_Est abl i shed_Event _G oups(VA D)

Functions Called
[TCT_Check_St ack]

EVF_Event _G oup_Poi nters

Builds a list of event group pointers, starting at the specified location. The number of event
group pointers placed in the list is equivalent to the total number of event groups or the
maximum number of pointers specified in the call.

UNSI GNED EVF_Event _Gr oup_Poi nt er s(NU_EVENT_GROUP **poi nter_li st,
UNSI GNED nmaxi mum _poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

EVF_Event G oup_I nformati on

Returns information about the specified event group. However, if the supplied event group
pointer is invalid, the function simply returns an error status.
STATUS EVF_Event _G oup_| nformati on(NU_EVENT_GROUP *event _group_ptr,

CHAR *name, UNSI GNED *event _f| ags,

UNSI GNED *t asks_wai ti ng,
NU_TASK **fjrst_task)

Functions Called

[TCT_Check_St ack]
TCT_System Prot ect
TCT_Unpr ot ect

155

Nucleus PLUS Internals

EVI Initialize

This function initializes the data structures that control the operation of the Event Group
Component. There are no event groups initially.

VO D EVI _Initialize(VaD)

Functions Called
None

156

Chapter 4 - Component Descriptions

Partition Memory Component (PM)

The Partition Memory Component (PM) is responsible for processing all Nucleus PLUS
partition memory facilities. A Nucleus PLUS partition memory pool contains a specific
number of fixed-size memory partitions. Tasks may suspend while waiting for a memory
partition from an empty pool. Partition pools are dynamically created and deleted by the
user. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about partition memory pools.

Partition Memory Files

The Partition Memory Component (PM) consists of seven files. Each source file of the
Partition Memory Component is defined below.

File Description

PM DEFS. H This file contains constants and data structure definitions
specific to the PM.

PM EXTR. H All external interfaces to the PM are defined in this file.

PMD. C Global data structures for the PM are defined in this file.

PM.C This file contains the initialization function for the PM.

PMF. C This file contains the information gathering functions for the
PM.

PMC. C This file contains all of the core functions of the PM. Functions
that handle basic allocate-memory and deallocate-memory
services are defined in this file.

PMCE. C This file contains the error checking function interfaces for the
core functions defined in PMC. C.

157

Nucleus PLUS Internals

Partition Memory Data Structures

Created Partition Memory List

Nucleus PLUS partition pools may be created and deleted dynamically. The Partition
Memory Control Block (PCB) for each created partition memory pool is kept on a doubly
linked, circular list. Newly created partition memory pools are placed at the end of the list,
while deleted partition memory pools are completely removed from the list. The head
pointer of this list is PMD_Cr eat ed_Pool s_Li st .

PMD_Created_Pools_List

PCB pcB | PCB ot PCB

Created Partition Memory List Protection

Nucleus PLUS protects the integrity of the Created Partition Memory List from
competing tasks and/or HISRs. This is done by using an internal protection structure called
PVD_Li st _Protect. All partition memory creation and deletion is done under the

protection of PMD_Li st _Protect.
Field Declarations

TC_TCB *tc_tcb_pointer
UNSI GNED tc_thread_waiting

Field Summary

Field Description
tc_tch_pointer Identifies the thread that currently has the protection.

tc_thread_waiting A flag indicating that one or more threads are waiting for
the protection.

158

Chapter 4 - Component Descriptions

Total Partition Pools

The total number of currently created Nucleus PLUS partition memory pools is
contained in the variable PMD Total Pools. The content of this variable
corresponds to the number of PCBs on the created list. Manipulation of this variable is also
done under the protection of PVMD_Li st _Prot ect .

Available Partitions List

The Available Partitions List is a singly linked NULL terminated list, which contains the
available partitions. The PCB contains pointers to the starting address of the list as well as
the next available partition in the list. Allocated partitions are removed from the front of the
list and deallocated partitions are place at the front of the list. Each partition has a header
block that links the partitions together.ports this field is not used.

NULL «—
pm_start_address |
PCB > PM_HEADER 0 l—
PM_HEADER 1 —
> PM_HEADER n —
pm_available_list

159

Nucleus PLUS Internals

Partition Pool Control Block

The Partition Memory Pool Control Block PM PCB contains the starting address of the

current memory pool and other fields necessary for processing partition pool requests.

Field Declarations

CS_NODE

UNSI GNED

CHAR

VO D

UNSI GNED

UNSI GNED

UNSI GNED

UNSI GNED

struct PM HEADER STRUCT
DATA_ELEMENT
DATA_ELEMENT

UNSI GNED

struct PM SUSPEND_STRUCT

160

pm creat ed

pmid

pm_nanme[NU_MAX_NANME]
*pm st art _address
pm_pool _si ze
pmpartition_size
pm_ avai |l abl e

pm al | ocat ed

*pm_ avai |l abl e_l i st
pm fifo_suspend
pm_paddi ng[PAD_1]
pm_tasks_waiting
*pm_suspensi on_| i st

Chapter 4 - Component Descriptions

Field Summary

Field Description

pm_creat ed This is the link node structure for partition memory
pools. It is linked into the created partition pools
list, which is a doubly linked, circular list.

pm.id This holds the internal partition memory pool
identification of 0x50415254, which is equivalent
to ASCII PART.

pm_nanme This is the user-specified, 8 character name for the

partition memory pool.

*pm_ start _address

This is the starting address of the current partition
memory pool.

pm_pool _si ze

Holds the size of the partition memory pool.

pm partition_size

This is the size of the current memory pool partition.

pm avail abl e

This is the number of partitions available for use in
the current memory pool.

pm al | ocat ed

Holds the number of allocated partitions.

*pm_ avail abl e_l i st

This is the list of available partitions of the current
memory pool.

pm fifo_suspend

A flag that determines whether tasks suspend in fifo
or priority order.

pm_paddi ng

This is used to align the partition memory pool
structure on an even boundary. In some ports this
field is not used.

pm tasks_waiting

Indicates the number of tasks that are currently
suspended on a partition memory pool.

*pm_suspension_li st

The head pointer of the partition memory pool
suspension list. If no tasks are suspended, this
pointer is NULL.

161

Nucleus PLUS Internals

Partition Memory Pool Header Structure

The partition header structure PM HEADER is placed at the beginning of each
available partition. Each header contains a pointer to the next available partition, except for
the last partition, which points to a null terminator. Each partition header also contains a
pointer to its PCB (Partition Memory Pool Control Block).

Field Declarations
struct PM HEADER STRUCT *pm next_avail abl e

PM_PCB *pm_ partition_pool
Field Summary
Field Description
*pm_next _avail abl e A pointer to the next partition in the available list.
pm partition_pool A pointer to this partition’s PCB.

Partition Memory Pool Suspension Structure

Tasks can suspend on empty and full partition memory pool conditions. During the
suspension process a PM SUSPEND structure is built. This structure contains
information about the task and the task’s partition pool request at the time of
suspension. This suspension structure is linked to the PCB in a doubly linked, circular list
and is allocated from the suspending task’s stack. There is one suspension block for every
task suspended on the partition memory pool.

The suspension block's position on the suspend list is determined at partition pool creation.
If a FIFO suspension was selected, the suspension block is added to the end of the list.
Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks with tasks of equal or higher priority.

162

Chapter 4 - Component Descriptions

Partition Memory Pool Header Structure

The partition header structure PM HEADER is placed at the beginning of each
available partition. Each header contains a pointer to the next available partition, except for
the last partition, which points to a null terminator. Each partition header also contains a
pointer to its PCB (Partition Memory Pool Control Block).

Field Declarations

struct PM HEADER STRUCT *pm next_avail abl e

PM_PCB *pm_ partition_pool
Field Summary
Field Description
*pm.onext _available A pointer to the next partition in the available list.
pm partition_pool A pointer to this partition's PCB.

Partition Memory Pool Suspension Structure

Tasks can suspend on empty and full partition memory pool conditions. During the
suspension process a PM SUSPEND structure is built. This structure contains
information about the task and the task’s partition pool request at the time of
suspension. This suspension structure is linked to the PCB in a doubly linked, circular list
and is allocated from the suspending task’s stack. There is one suspension block for every
task suspended on the partition memory pool.

The suspension block's position on the suspend list is determined at partition pool creation.
If a FIFO suspension was selected, the suspension block is added to the end of the list.
Otherwise, if priority suspension was selected, the suspension block is placed after
suspension blocks with tasks of equal or higher priority.

Partition Pool n
PCB

task 0 < task 1 < task 2 o . task n
PM_SUSPEND » PM_SUSPEND » PM_SUSPEND ¢ ¢ * ! PM SUSPEND

T A

v

Field Declarations

CS_NCDE pm suspend_Il i nk
PM_PCB *pm_partiton_pool
TC_TCB *pm suspended_t ask
VO D *pm.return_status

163

Nucleus PLUS Internals

Field Summary

Field Description

pm_suspend_| i nk A link node structure for linking with other
suspended blocks. It is used in a doubly linked,
circular suspension list.

*pm_partiton_pool A pointer to the partition memory pool structure.

*pm_suspended_t ask A pointer to the Task Control Block of the suspended
task.

*pm_r et urn_poi nt er The return memory address that has been requested.

pmreturn_status The completion status of the task suspended on the
partition pool.

Partition Memory Functions

The following sections provide a brief description of the functions in the Partition Memory
Component (PM). Review of the actual source code is recommended for further
information.

PMC Create Partition_Pool

Creates a memory partition pool and then places it on the list of created partition pools.

STATUS PMC Create_Partition_Pool (NU_PARTI TI ON_ POOL *pool _ptr, CHAR *nane,
VO D *start_address, UNSI GNED pool _si ze,
UNSI GNED partition_size, OPTION suspend_type)

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

164

Chapter 4 - Component Descriptions

PMC Del ete Partition_Pool

This function deletes a memory partition pool and removes it from the list of created
partition pools. All tasks suspended on the partition pool are resumed with the appropriate
error status. Note that this function does not free any memory associated with either the pool
area or the pool control block. That is the responsibility of the
application.

STATUS PMC Del ete_Partition_Pool (NU_PARTI TI ON_POOL *pool _ptr)

Functions Called

CSC_Renove_From Li st

[H C_Make_History Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_Prot ect

TCT_Set _Current _Protect
TCT_System Prot ect
TCT_Syst em Unpr ot ect
TCT_Unpr ot ect

PMC Al l ocate Partition

This function allocates a memory partition from the specified memory partition pool. If a
memory partition is currently available, this function is completed immediately. Otherwise,
if there are no partitions currently available, suspension is possible.

STATUS PMC Al l ocate_Partition(NU_PARTI TI ON_POOL *pool _ptr,
VO D *return_poi nter, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

CSC Priority_Place_On_Li st
[H C_Make_History_ Entry]
TCC_Suspend_Task

TCC Task_Priority

[TCT_Check_St ack]
TCT_Current _Thread
TCT_System Protect
TCT_Unpr ot ect

165

Nucleus PLUS Internals

PMC Deal | ocate_Partition

This function deallocates a previously allocated partition. If there is a task waiting for a
partition, the partition is simply given to the waiting task and the waiting task is resumed.
Otherwise, the partition is returned to the partition pool.

STATUS PMC Deal | ocate_Partition(VO D *partition)

Functions Called

CSC_Renpve_From Li st

[H C_Make_History_ Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_System Protect
TCT_Unpr ot ect

PMC_C eanup

This function is responsible for removing a suspension block from a partition pool. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as
at suspension time) is already in effect.

VO D PMC _d eanup(VA D *i nfornation)

Functions Called

CSC_Renove_From Li st

166

Chapter 4 - Component Descriptions

PMCE Create Partition_Pool

This function performs error checking on the parameters supplied to the create partition pool
function.

STATUS PMCE Create_Partition_Pool (NU_PARTI TI ON_POOL *pool _ptr, CHAR *nane,
VO D *start_address, UNSI GNED pool _si ze,
UNSI GNED partition_size,
OPTI ON suspend_type)

Functions Called
PMC Create_Partition_Pool

PMCE Del ete Partition_Pool

This function performs error checking on the parameters supplied to the delete partition pool
function.

STATUS PMCE Del ete_Partiti on_Pool (NU_PARTI TI ON_POOL *pool _ptr)

Functions Called
PMC Del ete_Partition_Pool

167

Nucleus PLUS Internals

PMCE Al |l ocate Partition

This function performs error checking on the parameters supplied to the allocate partition
function.

STATUS PMCE_Al |l ocate_Partiti on(NU_PARTI TI ON_POOL *pool _ptr,
VO D **return_poi nter, UNSI GNED suspend)

Functions Called

PMC_Al |l ocate_Partition
TCCE_Suspend_Error

PMCE Deal | ocate Partition

This function performs error checking on the parameters supplied to the deallocate partition
function.

STATUS PMCE Deal | ocate_Partition(VO D *partition)

Functions Called
PMC Deal | ocate_Partition

PMF_Est abl i shed_Partition_Pools

This function returns the current number of established partition pools. Pools
previously deleted are no longer considered established.

UNSI GNED PMF_Est abl i shed_Partiti on_Pool s(VA D)

Functions Called
[TCT_Check_St ack]

168

Chapter 4 - Component Descriptions

PMF_Partition_Pool Pointers

Builds a list of pool pointers, starting at the specified location. The number of pool pointers
placed in the list is equivalent to the total number of pools or the maximum number of
pointers specified in the call.

UNSI GNED PMF_Partition_Pool _Poi nters(NU_PARTI TI ON_POOL *pointer_|i st,
UNSI GNED nmaxi mum _poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

PMF _Partition_Pool |Information

This function returns information about the specified partition pool. However, if the
supplied partition pool pointer is invalid, the function simply returns an error status.

STATUSPMF_Partition_Pool _| nformati on(NU_PARTI TI ON_POOL *pool _ptr, CHAR *nane,
VO D **start_address,
UNSI GNED * pool _si ze,
UNSI GNED *partition_size,
UNSI GNED *avai | abl e, UNSI GNED *al | ocat ed,
OPTI ON *suspend_t ype,
UNSI GNED *t asks_wai ti ng,
NU_TASK **first_task)

Functions Called

[TCT_Check_St ack]
TCT_System Protect
TCT_Unpr ot ect

169

Nucleus PLUS Internals

PM Initialize

This function initializes the data structures that control the operation of the Partition
Memory component. There are no partition pools initially.

VO D PM _Initialize(Va D)

Functions Called
None

Dynamic Memory Component (DM)

The Dynamic Memory Component (DM) is responsible for processing all Nucleus PLUS
dynamic memory facilities. A Nucleus PLUS dynamic memory pool contains a user-
specified number of bytes. The memory location of the pool is determined by the
application. Tasks may suspend while waiting for enough dynamic memory to become
available. Dynamic pools are dynamically created and deleted by the user. Please see
Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information about
dynamic memory pools.

170

Chapter 4 - Component Descriptions

Dynamic Memory Files

The Dynamic Memory Component (DM) consists of seven files. Each source file of the
Dynamic Memory Component is defined below.

Field Description

DM DEFS. H This file contains constants and data structure
definitions specific to the DM

DM EXTR. H All external interfaces to the DM are defined in this file

DVD. C Gloabal data structures for the DM are defined in this
file.

DM .C This file contains the initialization function for the DM

DWF. C This file contains the information gathering functions
for the DM

DMVC. C This file contains all of the core functions of the DM.
Functions that handle basic allocate-memory and
deallocat-memory services are defined in this file.

DMCE. C This file contains the error checking function interfaces
for the core functions defined in DMC. C.

171

Nucleus PLUS Internals

Dynamic Memory Data Structures

Created Dynamic Memory List

Nucleus PLUS dynamic memory pools may be created and deleted dynamically. The
Dynamic Memory Control Block (PCB) for each created dynamic memory pool is kept on a
doubly linked, circular list. Newly created dynamic memory pools are placed at the end of
the list, while deleted dynamic memory pools are completely removed from the list. The
head pointer of this list is DVD_Cr eat ed_Pool s_Li st .

DMD_Created_Pools_List

PCB PCB PCB Lo PCB

Y
Y

Created Dynamic Memory List Protection

Nucleus PLUS protects the integrity of the Created Dynamic Memory List from
competing tasks and/or HISRs. This is done by using an internal protection structure called
DVD _Li st_Protect. All dynamic memory creation and deletion is done under the
protection of DVD_Li st_Protect.

Field Declarations

TC_TCB *tc_tchb_pointer
UNSI GNED tc_thread_waiting

Field Summary
Field Description
tc_tch_pointer Identifies the thread that currently has the protection.
tc_thread_waiting | A flag indicating that one or more threads are waiting for the
protection.

172

Chapter 4 - Component Descriptions

Total Dynamic Pools

The total number of currently created Nucleus PLUS dynamic memory pools is contained in
the variable DVD_Tot al _Pool s. The content of this variable
corresponds to the number of PCBs on the created list. Manipulation of this variable is also
done under the protection of DVD_Li st _Prot ect .

Available Memory List

The Available Memory List is a doubly linked, NULL terminated, circular list, which
contains the available dynamic memory blocks. The PCB contains pointers to the starting
address of the list as well as the next available block in the list. A search pointer is also
contained in the PCB. It linearly searches for and accumulates available memory blocks in
order to fill memory requests. Allocated blocks are removed from the front of the list and
deallocated blocks are placed back in the list at the point where they came from. Each block
includes a header that links the various blocks together.

dm_start_address v
di 1
PCB m_memory_list > DM_HEADER 0
DM_HEADER 1 n
= —
dm_search_ptr
DM_HEADER n n
= —
End of Pool <

173

Nucleus PLUS Internals

Dynamic Pool Control Block

The Dynamic Memory Pool Control Block DM PCB contains the starting address of the
current memory pool and other fields necessary for processing dynamic memory pool

requests.

Field Declarations

CS_NODE

TC_PROTECT

UNSI GNED

CHAR

va D

UNSI GNED

UNSI GNED

UNSI GNED

struct DM HEADER STRUCT
DM _HEADER_STRUCT
DATA_ELEMENT
DATA_ELEMENT

UNSI GNED

struct DM _SUSPEND_STRUCT

174

dm created

dm pr ot ect

dm.id

dm_nanme[NU_MAX_NAME]
*dm st art _address
dm pool _si ze

dm nmin_all ocation
dm avai |l abl e

*dm nmenory_|ist struct
*dm search_ptr

dm fifo_suspend

dm paddi ng[PAD_1]

dm t asks_wai ting
*dm_suspensi on_| i st

Chapter 4 - Component Descriptions

Field Summary

Field Description

dmcreated This is the link node structure for dynamic memory
pools. It is linked into the created dynamic pools list,
which is a doubly linked, circular list.

dm_pr ot ect A pointer to the protection structure for the dynamic
memory pool.

dm.id This holds the internal dynamic memory pool
identification of 0x44594E41, which is equivalent to
ASCII DYNA.

dm nane

This is the user-specified, 8 character name for the
dynamic memory pool.

*dm start _address

This is the starting address of the current dynamic
memory pool.

dm pool _si ze

Holds the size of the dynamic memory pool.

dm mn_all ocation

The minimum number of bytes to be allocated in a
block.

dm avail abl e

This is the total number of bytes available for use in the
current memory pool.

*dm nmenory_|i st

A list of the memory blocks in the current memory pool.

*dm search_ptr

The search pointer used for locating a dynamic memory
pool header.

dm fifo_suspend

A flag that determines whether tasks suspend in fifo or
priority order.

dm paddi ng

This is used to align the dynamic memory pool structure
on an even boundary. In some ports this field is not
used.

dm tasks_waiting

Indicates the number of tasks that are currently
suspended on a dynamic memory pool.

*dm_suspensi on_l i st

The head pointer of the dynamic memory pool
suspension list. If no tasks are suspended, this pointer is
NULL.

175

Nucleus PLUS Internals

Dynamic Memory Pool Header Structure

The dynamic header structure DM HEADER is placed at the beginning of each
available memory block. Each header contains pointers to both the next available memory
block and the previous available memory block. The last block’s next pointer points to a
null terminator. Each dynamic memory header also contains a pointer to its PCB.

Field Declarations

struct DM HEADER STRUCT *dm_next _menory

struct DM HEADER STRUCT *dm_pr evi ous_mnenory

DATA_ELEMENT dm nmenmory_free

DM _PCB *dm_nenory_pool

Field Summary

Field Description

*dm next _nenory A pointer to the next memory block in the available list.

*dm_previ ous_menory | A pointer to the previous memory block in the available
list.

dm nenory_free A flag that indicates if the current memory block is free.

dm_menory_pool A pointer to the PCB, which this memory block belongs
to.

Dynamic Memory Pool Suspension Structure

Tasks can suspend on empty and full dynamic memory pool conditions. During the
suspension process a DM SUSPEND _STRUCT structure is built. This structure contains
information about the task and the task’s dynamic pool request at the time of
suspension. This suspension structure is linked onto the PCB in a doubly linked, circular list
and is allocated off of the suspending task’s stack. There is one suspension block for every
task suspended on the dynamic memory pool.

The order of the suspension block placement on the suspend list is determined at dynamic
pool creation. If a FIFO suspension was selected, the suspension block is added to the end
of the list. Otherwise, if priority suspension was selected, the suspension block is placed
after suspension blocks for tasks of equal or higher priority.

Dynamic Pool n
PCB

N task 0 < task 1 < task 2 . e 4/ task n
DM_SUSPEND » DM_SUSPEND » DM_SUSPEND ¢ ¢ * 3! DM _SUSPEND

T A

176

Chapter 4 - Component Descriptions

Field Declarations
CS_NODE dm suspend_l i nk

DM _PCB *dm_nenory_pool
UNSI GNED dm request _si ze
TC_TCB *dm suspended_t ask
VO D *dm_return_poi nter
STATUS dm return_status
Field Summary
Field Description
dm suspend_| i nk A link node structure for linking with other
suspended blocks. It is used in a doubly linked,
circular suspension list.
*dm nenory_pool A pointer to the dynamic memory pool structure.
dm request _size Contains the size of the requested memory block.
*dm suspended_t ask A pointer to the Task Control Block of the
suspended task.
*dm return_pointer The return memory address that has been requested.
dmreturn_status The completion status of the task suspended on the
dynamic pool.

177

Nucleus PLUS Internals

Dynamic Memory Functions

The following sections provide a brief description of the functions in the Dynamic Memory
Component (DM). Review of the actual source code is recommended for further
information.

DMC _Cr eat e_Menory_Pool

Creates a dynamic memory pool and then places it on the list of created dynamic memory
pools. If the list does not exist, then this pool becomes the first item in the dynamic memory
pools list.

STATUS DMC Create_Menory_Pool (NU_MEMORY_POOL *pool _ptr, CHAR *nane,
VO D *start_address, UNSI GNED pool _si ze,
UNSI GNED ni n_al | ocati on, OPTI ON suspend_type)

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History_ Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

DMC Del et e_Menory_Pool

This function deletes a dynamic memory pool and removes it from the list of created
memory pools. All tasks suspended on the memory pool are resumed with the
appropriate error status. Note that this function does not free any memory associated with
either the pool area or the pool control block. That is the responsibility of the
application.

STATUS DMC Del et e_Menory_Pool (NU_MEMORY_POOL *pool _ptr)

Functions Called

CSC_Renpve_From Li st

[H C_Make_History Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_Prot ect

TCT_Set _Current _Protect
TCT_System Protect
TCT_Syst em Unpr ot ect
TCT_Unpr ot ect

178

Chapter 4 - Component Descriptions

DMC Al |l ocate_Menory

This function allocates memory from the specified dynamic memory pool. If enough
dynamic memory is currently available, this function is completed immediately.
Otherwise, task suspension is possible.

STATUS DMC Al | ocat e_Menory(NU_MEMORY_POOL *pool _ptr, VO D **return_pointer,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History_ Entry]
TCC_Suspend_Task

TCC Task_Priority

[TCT_Check_St ack]
TCT_Current _Thread
TCT_Prot ect

TCT_Set _Suspend_Pr ot ect
TCT_System Protect
TCT_Unpr ot ect
TCT_Unprotect _Specific

DMC Deal | ocat e_Menory

This function deallocates a previously allocated dynamic memory block. The deallocated
dynamic memory block is merged with any adjacent neighbors. This insures that there are no
consecutive blocks of free memory in the pool, which makes the search easier. If there is a
task waiting for dynamic memory, a determination of whether or not the request can now be
satisfied is made after the deallocation is complete.

STATUS DMC Deal | ocat e_Menory(VO D *nenory)

Functions Called

CSC_Renobve_From Li st

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_Set _Current _Protect
TCT_System Prot ect
TCT_Syst em Unpr ot ect
TCT_Pr ot ect

TCT_Unpr ot ect

179

Nucleus PLUS Internals

DMC_C eanup

This function is responsible for removing a suspension block from a memory pool. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VO D DMC_d eanup(VA D *i nfornati on)

Functions Called

CSC_Renove_From Li st

DMCE Creat e_Menory_Pool

This function performs error checking on the parameters supplied to create the dynamic
memory pool function.

STATUS DMCE_Creat e_Menory_Pool (NU_MEMORY_POOL *pool _ptr, CHAR *nane,
VO D *start_address, UNSI GNED pool _si ze,
UNSI GNED mi n_al | ocati on, OPTI ON suspend_t ype)

Functions Called
DMC_Cr eat e_Menory_Pool

DMCE Del et e_Menory_Pool

This function performs error checking on the parameters supplied to the delete dynamic
memory pool function.

STATUS DMCE Del et e_Menory_Pool (NU_MEMORY_POOL *pool _ptr)

Functions Called
DMC_Del et e_Menory_Pool

180

Chapter 4 - Component Descriptions

DMC Al |l ocate_Menory

This function allocates memory from the specified dynamic memory pool. If enough
dynamic memory is currently available, this function is completed immediately.
Otherwise, task suspension is possible.

STATUS DMC Al | ocat e_Menory(NU_MEMORY_POOL *pool _ptr, VO D **return_pointer,
UNSI GNED si ze, UNSI GNED suspend)

Functions Called

CSC Pl ace_on_list

[H C_Make_History_ Entry]
TCC_Suspend_Task

TCC Task_Priority

[TCT_Check_St ack]
TCT_Currtne_Thread
TCT_Prot ect

TCT_Set _Suspend_Pr ot ect
TCT_System Protect
TCT_Unpr ot ect
TCT_Unprotect _Specific

DMC Deal | ocat e_Menory

This function deallocates a previously allocated dynamic memory block. The deallocated
dynamic memory block is merged with any adjacent neighbors. This insures that there are no
consecutive blocks of free memory in the pool, which makes the search easier. If there is a
task waiting for dynamic memory, a determination of whether or not the request can now be
satisfied is made after the deallocation is complete.

STATUS DMC Deal | ocat e_Menory(VO D *nenory)

Functions Called

CSC_Renobve_From Li st

[H C_Make History_Entry]
TCC_Resune_Task

[TCT_Check_St ack]
TCT_Control _To_System
TCT_Set _Current _Protect
TCT_System Prot ect
TCT_Syst em Unpr ot ect
TCT_Pr ot ect

TCT_Unpr ot ect

181

Nucleus PLUS Internals

DMC_C eanup

This function is responsible for removing a suspension block from a memory pool. It is not
called unless a timeout or a task terminate is in progress. Note that protection (the same as at
suspension time) is already in effect.

VO D DMC_d eanup(VA D *i nfornati on)

Functions Called

CSC_Renove_From Li st

DMCE Creat e_Menory_Pool

This function performs error checking on the parameters supplied to create the dynamic
memory pool function.

STATUS DMCE_Creat e_Menory_Pool (NU_MEMORY_POOL *pool _ptr, CHAR *nane,
VO D *start_address, UNSI GNED pool _si ze,
UNSI GNED mi n_al | ocati on, OPTI ON suspend_t ype)

Functions Called
DMC_Cr eat e_Menory_Pool

DMCE Del et e_Menory_Pool

This function performs error checking on the parameters supplied to the delete dynamic
memory pool function.

STATUS DMCE Del et e_Menory_Pool (NU_MEMORY_POOL *pool _ptr)

Functions Called
DMC_Del et e_Menory_Pool

182

Chapter 4 - Component Descriptions

DMCE Al | ocat e_Menory

This function performs error checking on the parameters supplied to the allocate memory
function.

STATUS DMCE_Al | ocat e_Menory(NU_MEMORY_POOL *pool _ptr,
VO D **return_pointer, UNSIGNED si ze,
UNSI GNED suspend)

Functions Called

DMC_Al | ocat e_Menory
TCCE_Suspend_Error

DMCE Deal | ocat e_Menory

This function performs error checking on the parameters supplied to the deallocate memory
function.

STATUS DMCE Deal | ocat e_Menory(VO D *nenory)

Functions Called
DMC Deal | ocat e_Menory

DMF_Est abl i shed_Menory_Pool s

Returns the current number of established memory pools. Pools previously deleted are no
longer considered established.

UNSI GNED DMF_Est abl i shed_Menory_Pool s(VO D)

Functions Called
[TCT_Check_St ack]

183

Nucleus PLUS Internals

DMF_Menory_ Pool Poi nters

Builds a list of pool pointers, starting at the specified location. The number of pool pointers
placed in the list is equivalent to the total number of pools or the maximum number of
pointers specified in the call.

UNSI GNED DMF_Menory_Pool _Poi nt er s(NU_MEMORY_PX **pointer_|ist,
UNSI GNED maxi mum_poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Prot ect
TCT_Unpr ot ect

DMF_Menory_ Pool | nformation

Returns information about the specified memory pool. However, if the supplied memory
pool pointer is invalid, the function simply returns an error status.

STATUS DMF_Menory_Pool _| nformati on(NU_MEMORY_POOL *pool _ptr, CHAR *nane,

VO D **start_address,

UNSI GNED * pool _si ze,

UNSI GNED*mi n_al | ocat i on,

UNSI GNED *avai | abl e,

OPTI ON *suspend_t ype,

UNSI GNED *t asks_wai ti ng,

NU_TASK **first_task)

Functions Called

[TCT_Check_St ack]
TCT_Pr ot ect
TCT_Unpr ot ect

184

Chapter 4 - Component Descriptions

DM Initialize

This function initializes the data structures that control the operation of the Dynamic
Memory component. There are no dynamic memory pools initially.

VO D DM _Initialize(Va D)

Functions Called
None

Input/Output Driver Component (1O)

The Input/Output Driver Component (IO) is responsible for processing all Nucleus PLUS
input/output facilities. A Nucleus PLUS IO Driver Component provides a standard I/O
driver interface for initialization, assign, release, input, output, status and terminate requests.
This interface is implemented with a common control structure. This enables applications to
deal with a variety of peripherals in a similar, if not the same manner. Tasks may suspend
while waiting for a peripheral to become available. 1/O drivers are dynamically created and
deleted by the user. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more
detailed information about input/output drivers.

Input/Output Driver Files

The Input/Output Driver Component (I0) consists of seven files. Each source file of the
Input/Output Driver Component is defined below.

File Description

I O_DEFS. H This file contains constants and data structure definitions specific to
the 10.

| O EXTR H All external interfaces to the IO are defined in this file.

1oD. C Global data structures for the 10 are defined in this file.

1a.cC This file contains the initialization function for the 10.

IOF. C This file contains the information gathering functions for the 10.

ICoC. C This file contains all of the core functions of the I0. Functions that
handle basic input and ouput services are defined in this file.

I OCE. C This file contains the error checking function interfaces for the core
functions defined in | OC. C.

185

Nucleus PLUS Internals

Input/Output Data Structures

Created Input/Output List

Nucleus PLUS input/output drivers may be created and deleted dynamically. The
Input/Output Control Block (NU_DRI VER) for each created input/output driver is kept on a
doubly linked, circular list. Newly created input/output drivers are placed at the end of the

I0D_Created_Drivers_List

list, while deleted input/output drivers are completely removed from the list. The head
pointer of this listis 1 OD_Created_Dri vers_Li st.
NU_DRIVER" NU_DRIVER" NU DRIVER - . o NU_DRIVER
> > —

f

A

Input/Output Driver Control Block

The Input/Output Driver Control Block (NU_DRI VER) contains the entry function of the

current driver and other fields necessary for processing input/output driver

requests.

Field Declarations

UNSI GNED wor ds
CHAR

[NU_DRI VER_SI ZE]
nu_dri ver _name[NU_MAX_NAME]

VA D *nu_info_ptr
UNSI GNED nu_driver_id
VA D (*nu_driver_entry)(struct NU DRI VER STRUCT*,
NU_DRI VER_REQUEST *)
Field Summary
Field Description
wor ds This is the link node structure for I/O drivers. It is linked

into the created I/O driver’s list, which is a doubly linked,
circular list.

nu_driver_nane

This is the user-specified, 8-character name for the I/O
driver.

*nu_info_ptr

A pointer to the users structure.

nu_driver_id

This holds the internal 1/O driver identification of
0x494F4452, which is an equivalent to ASCII IODR.

(*nu_driver_entry)

This is the I/0 driver’s entry function.

186

Chapter 4 - Component Descriptions

Created Input/Output List Protection

Nucleus PLUS protects the integrity of the Created Input/Output List from competing tasks
and/or HISRs. This is done by wusing an internal protection structure called

| OD_Li st _Protect. Allinput/output creation and deletion is done under the protection of
1 OD_List_Protect.

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting

Field Summary
Field Description
tc_tchb_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for
the protection.

187

Nucleus PLUS Internals

Total Input/Output Drivers

The total number of currently created Nucleus PLUS input/output drivers is contained in the
variable | OD_Total _Drivers. The contents of this variable correspond to the number of
NU_DRI VERs on the created list. Manipulation of this variable is also done under the
protection of | OD_Li st _Prot ect.

Input/Output Driver Request Structure

The input/output driver request structure NU_DRI VER_REQUEST is responsible for passing
necessary information to and from a created I/O driver. The type of information in the
request is specified by the nu_function field in the request structure. Of course, the
exact interpretation of this structure depends on the specific driver.

Field Declarations

I NT nu_function

UNSI GNED nu_ti neout

STATUS nu_st at us

UNSI GNED nu_suppl enent al

VO D nu_suppl enental _ptr

uni on NU_REQUEST | NFO_UNI ON nu_request _i nfo

Field Summary

Field Description

nu_function This is the 1/0 request function code. It can have one of 7
values depending on which request is desired:

NU_I NI TI ALI ZE
NU_ASSI GN
NU_RELEASE
NU_I NPUT
NU_OUTPUT
NU_STATUS
NU_TERM NATE
nu_ti neout Holds the timeout on request.

nu_st at us Contains the status of the request.

nu_suppl enent al Contains user supplied supplemental information.
*nu_suppl ement al _ptr | A pointer to the driver specific supplemental information
[optional].

nu_request _i nfo A union of the structures that are used for driver requests.
These requests include initialization, assign, release, input,
output, status, and terminate.

N OO B~ WIN| -

188

Chapter 4 - Component Descriptions

Input/OQutput Driver Initialization Requests

I/O driver’s initialization requests are made wusing the initialization structure
NU_| NI TI ALI ZE_STRUCT. This structure contains information about the driver’s base
address and the driver’s interrupt vector. This request is designated with an
NU_I NI TI ALI ZE value in the nu_function field of the NU_DRI VER_REQUEST structure.

Field Declarations

VO D *nu_i o_address
UNSI GNED nu_l ogi cal _units
VO D *nu_nenory
I NT nu_vect or
Field Summary
Field Description
*nu_i o_addr ess A pointer to the base I/O address of the driver.
nu_| ogi cal _units Contains the number of logical units in the driver.
*nu_nenory A generic memory pointer.
nu_vector Contains the interrupt vector number of the driver.

Input/Output Driver Assignment Requests

I/O driver assignment requests are made using the NU_ASSI GN_STRUCT structure. This
request is designated with an NU_ASSI GN value in the nu_function field of the
NU_DRI VER_REQUEST structure.

Field Declarations
UNSI GNED nu_l ogi cal _unit

I NT nu_assign_info
Field Summary
Field Description
nu_l ogi cal _unit Contains the 1/0 driver’s logical unit number.
nu_assi gn_info This variable is used for additional I/O driver assign
information.

189

Nucleus PLUS Internals

Input/Output Driver Release Requests

I/O driver release requests are made using the NU RELEASE_STRUCT structure. This
request is designated with an NU_RELEASE value in the nu_function field of the
NU_DRI VER REQUEST structure.

Field Declarations
UNSI GNED nu_| ogi cal _unit

I NT nu_rel ease_info
Field Summary
Field Description
nu_l ogi cal _unit | Contains the I/O driver’s logical unit number.
nu_assi gn_info This variable is used for additional I/O driver release
information.

Input/Output Driver Input Requests

I/O driver inputs are made using the NU_|I NPUT_STRUCT structure. This structure contains
information about data sent to the driver for processing. This request is designated with an
NU_I NPUT value in the nu_function field of the NU_DRI VER_REQUEST structure.

Field Declarations

UNSI GNED nu_| ogi cal _uni t
UNSI GNED nu_of f set

UNSI GNED nu_r equest _si ze
UNSI GNED nu_act ual _si ze

Void *nu_buffer_ptr

Field Summary
Field Description
nu_l ogi cal _unit Contains the I/O driver’s logical unit number.
nu_of f set An 1/0 offset used as an offset from the device base 1/0 address
or an offset into the input buffer.
nu_request _si ze The requested size of the I/O driver input data.
nu_actual _si ze The actual size of the I/O driver input data.
“nu_buffer_ptr A pointer to the I/O driver input data buffer.

190

Chapter 4 - Component Descriptions

Input/Output Driver Output Requests

I/O driver output requests are made using the NU OQUTPUT_STRUCT structure. This
structure contains information about data received from the driver. This request is designated
with an NU_QUTPUT value in the nu_function field of the NU DRI VER REQUEST
structure.

Field Declarations

UNSI GNED nu_|l ogi cal _unit
UNSI GNED nu_of f set

UNSI GNED nu_request _si ze
UNSI GNED nu_actual _si ze

VO D *nu_buffer_ptr
Field Summary
Field Description
nu_l ogi cal _unit Contains the I/O driver’s logical unit number.
nu_of f set An 1/0 offset used as an offset from the device base 1/0
address or an offset into the output buffer.
nu_request _si ze The requested size of the 1/O driver output data.
nu_actual _si ze The actual size of the I/O driver output data.
“nu_buffer_ptr A pointer to the I/O driver output buffer.

Input/Output Driver Status Requests

I/O driver status requests are made using the NU_STATUS_STRUCT structure. This request
is designated with an NU STATUS value in the nu_function field of the
NU_DRI VER REQUEST structure.

Field Declarations
UNSI GNED nu_|l ogi cal _unit

VO D *nu_extra_status
Field Summary
Field Description
nu_l ogi cal _uni t Contains the /0 driver’s logical unit number.
*nu_extra_status A pointer to additional status information.

191

Nucleus PLUS Internals

Input/Output Driver Terminate Requests

I/O driver terminate requests are made using the NU_TERM NATE_STRUCT
structure. This request is designated with an NU_TERM NATE value in the nu_function field
of the NU_DRI VER REQUEST structure.

Field Declarations
UNSI GNED nu_l ogi cal _uni t

Field Summary
Field Description
nu_l ogi cal _uni t Contains the 1/0 driver’s logical unit number.

Input/Output Driver Functions

The following sections provide a brief description of the functions in the Input/Output
Driver Component (IO). Review of the actual source code is recommended for further
information.

| OC Create Driver

Creates an I/O driver and places it on the list of created I/O drivers. Note that this function
does not actually invoke the driver.

STATUS | OC Create_Driver (NU_DRIVER *driver, CHAR *nanme, VO D *driver_entry)
(NU_DRI'VER *, NU_DRI VER_REQUEST *))

Functions Called

CSC Pl ace_On_Li st

[H C_Make_History_Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

192

Chapter 4 - Component Descriptions

| OC Del ete Driver

This function deletes an I/0O driver and removes it from the list of created drivers. Note that
this function does not actually invoke the driver.

STATUS | OC Del ete_Driver(NU DRI VER *dri ver)

Functions Called

CSC_Renpve_From Li st

[H C_Make_History_ Entry]
[TCT_Check_St ack]
TCT_Prot ect

TCT_Unpr ot ect

| OC _Request _Driver

This function sends a user request to the specified I/O driver.

STATUS | OC_Request _Driver (NU_DRI VER *driver, NU_DRI VER REQUEST *request)

Functions Called

[H C_Make_History Entry]
[TCT_Check_St ack]

| OC_Resune_Driver

Resumes a task previously suspended inside an I/O driver. Typically, this function is called
from within an I/O driver.

STATUS | OC Resune_Driver (NU_TASK *t ask)

Functions Called

[H C_Make_History Entry]
TCC_Resune_Task
TCT_Control _To_System

[TCT_Check_St ack]
TCT_Cet _Current _Protect
TCT_Set _Current _Protect
TCT_System Protect
TCT_Syst em Unpr ot ect
TCT_Unpr ot ect
TCT_Unprotect _Specific

193

Nucleus PLUS Internals

| OC Suspend_Dri ver

This function suspends a task inside an I/O driver. It is the responsibility of the I/O driver to
keep track of tasks waiting inside an I/O driver.

STATUS | OC Suspend_Driver(VOD (*term nate_routine)(VOD *),
VA D *i nfornmati on, UNSI GNED ti neout)

Functions Called

[H C_Make_History_ Entry]
TCC_Suspend_Task
TCT_Current _Thread

[TCT_Check_St ack]
TCT_Cet _Current _Protect
TCT_Set _Suspend_Pr ot ect
TCT_System Protect
TCT_Unprotect _Specific

| OCE Create Driver

This function performs error checking on the parameters supplied to the I/O driver create
function.

STATUS | CCE _Create_Driver (NU_ DRI VER *driver, CHAR *name, VO D (*driver_entry)
(NU_DRI VER*, NU_DRI VER_REQUEST*))

Functions Called
1 OC _Create_Driver

| OCE Del ete_Driver

This function performs error checking on the parameters supplied to the I/O driver delete
function.

STATUS | OCE_Del ete_Dri ver (NU_DRI VER *dri ver)

Functions Called
1 OC Del ete_Driver

194

Chapter 4 - Component Descriptions

| OCE_Request _Driver

This function performs error checking on the parameters supplied to the I/O driver request
function.

STATUS | OCE_Request _Driver (NU DRI VER *driver, NU DRI VER REQUEST *request)

Functions Called
| OC_Request _Driver

| OCE_Resune_Dri ver

This function performs error checking on the parameters supplied to the I/O driver resume
function.

STATUS | OCE_Resune_Dri ver (NU_TASK *t ask)
Functions Called

| OC_Resune_Driver

TCCE_Val i dat e_Resune

| OCE_Suspend_Dri ver

This function performs error checking on the parameters supplied to the I/O driver suspend
function.

STATUS | OCE Suspend_Driver (VO D (*term nate_routine) (VO D),
VA D *i nformation, UNSI GNED ti neout)

Functions Called

| OC_Suspend_Dri ver
TCCE_Suspend_Error

| OF_Established Drivers

Returns the current number of established 1/O drivers. 1/O drivers previously deleted are no
longer considered established.

UNSI GNED | OF_Est abl i shed_Dri ver s(VA D)

Functions Called
[TCT_Check_St ack]

195

Nucleus PLUS Internals

| OF Driver_Pointers

Builds a list of driver pointers, starting at the specified location. The number of driver
pointers placed in the list is equivalent to the total number of drivers or the maximum
number of pointers specified in the call.

UNSI GNED | OF_Dri ver _Poi nters(NU_DRI VER **poi nter_|i st,
UNSI GNED mexi mum_poi nt er s)

Functions Called

[TCT_Check_St ack]
TCT_Prot ect
TCT_Unpr ot ect

A _Initialize

This function initializes the data structures that control the operation of the I/O driver
component. There are no I/O drivers initially.

VOD 10 _Initialize(VaD)

Functions Called
None

196

Chapter 4 - Component Descriptions

History Component (HI)

The History Component (HI) is responsible for processing all Nucleus PLUS History
facilities. The Nucleus PLUS History Component maintains a circular log of various
system activities. Application tasks and HISRs can make entries into the history log. Each
entry in the history log contains information about the particular Nucleus PLUS service call
and the caller. Please see Chapter 14 of the Nucleus PLUS Reference Manual for more
detailed information about the History log.

History Files

The History Component (HI) consists of five files. Each source file of the History
Component is defined below.

File Description

H _DEFS. H This file contains constants and data structure definitions
specific to the HI.

H _EXTR H All external interfaces to the HI are defined in this file.

HC C This file contains all of the core functions of the HI. Functions

that handle basic enable-history-saving and disable-history-
saving services are defined in this file.

H D C Global data structures for the HI are defined in this file.
HIT.C This file contains the initialization function for the HI.

History Data Structures

History Enable

Nucleus PLUS History entries may be made dynamically. The History Enable flag indicates
whether or not history saving is enabled. If this wvalue is NU_FALSE,
history saving is disabled. Otherwise, history saving is enabled and an appropriate entry will
be made in the history log as required.

Write Index

The index of the next entry into the Nucleus PLUS History table is contained in the variable
H D Wite_l ndex. The contents of this variable correspond to the location of the index
of the next available entry in the History table. Manipulation of this variable is also done
under the protection of HI D Hi st ory_Protect.

Read Index

The index of the oldest entry into the Nucleus PLUS History table is contained in the
variable H D_Read_| ndex. The contents of this variable correspond to the location of the
index of the oldest entry in the History table. Manipulation of this variable is also done
under the protection of HI D_Hi story_Prot ect.

197

Nucleus PLUS Internals

History Table Protection

Nucleus PLUS protects the integrity of the History Table from competing tasks and/or
HISRs. This is done by wusing an internal protection structure called
H D _Hi story_Protect. All History enabling and disabling is done under the protection
of HID History Protect.

Field Declarations

TC_TCB *tc_tch_pointer
UNSI GNED tc_thread_waiting

Field Summary
Field Declarations
tc_tch_pointer Identifies the thread that currently has the protection.
tc_thread_waiting A flag indicating that one or more threads are waiting for
the protection.

Total Entries

The total number of entries in the Nucleus PLUS History Table is contained in the variable
H D _Entry_Count. The contents of this variable correspond to the number of valid entries
in the History table. Manipulation of this variable is also done under the protection of
H D _History_ Protect.

History Table Structure

The History Table Structure H _HI STORY_ENTRY contains the starting index of the current
history entry and other fields necessary for processing History requests.

Field Declarations

DATA_ELEMENT hi _id

DATA_ELEMENT hi _caller

UNSI GNED hi _parani

UNSI GNED hi _paran?

UNSI GNED hi _paranB

UNSI GNED hi _time

VA D *hi _t hread

Field Summary

Field Description

hi_id This is the index in the table for History entries. It is a simple array
consisting only of Hl _HI STORY_ENTRY structures.

hi _cal l er The entity that made the entry into the History log. This can be a task,
a HISR or the initialization process.

hi _par anil The first parameter for storing logged history information

hi _par an? The second parameter for storing logged history information.

hi _paranB The third parameter for storing logged history information.

hi _time The current system time in clock ticks.

*hi _thread A pointer to the calling thread.

198

Chapter 4 - Component Descriptions

History Functions

The following sections provide a brief description of the functions in the History Component
(HI). Review of the actual source code is recommended for further information.

H C Di sabl e_Hi story_Savi ng

This function disables the history saving function.

VO D H C D sable_H story_Savi ng(VA D)
Functions Called

TCT_Prot ect

TCT_Unpr ot ect

H C _Enabl e_Hi story_Savi ng

This function enables the history saving function.
VO D H C Enabl e_Hi story_Savi ng(VA D)
Functions Called

TCT_Prot ect
TCT_Unpr ot ect

199

Nucleus PLUS Internals

H C Make History Entry_ Service

This function makes an application entry in the history table.

VO D H C Make_Hi story_Entry_Servi ce(UNSI GNED par anl, UNSI GNED par an®,
UNSI GNED par anB)

Functions Called
H C Make_Hi story Entry

H C Make History Entry

This function makes an entry in the next available location in the history table,
(if history saving is enabled).

VO D H C Make_Hi story_Entry(DATA ELEMENT id, UNSI GNED par ant,
UNSI GNED par an2, UNSI GNED par anB)

Functions Called

TCC _Current _H SR _Poi nter
TCC _Current _Task_Poi nter
TCT_Cet _Current _Protect
TCT_Prot ect

TCT_Set _Current _Protect
TCT_Unpr ot ect
TCT_Unprotect _Specific
TMI_Retrieve_d ock

200

Chapter 4 - Component Descriptions

H C Retrieve_Hi story Entry

This function retrieves the next oldest entry in the history table. If no more entries are
available, an error status is returned.

STATUS HI C Retrieve_Hi story_ Entry(DATA ELEVENT*i d, UNSI GNED *par ant,
UNSI GNED *par an2, UNSI GNED * par an8,
UNSI GNED *time, NU TASK **task,
NU_H SR **hi sr)

Functions Called

TCT_Prot ect
TCT_Unpr ot ect

H1 Initialize

This function initializes the data structures that control the operation of the History
component.

VO D HI_lInitialize(VaD)

Functions Called
None

Error Component (ER)

The Error Component (ER) is responsible for processing all Nucleus PLUS System Errors.
The Nucleus PLUS Error Component is a common error handling routine that handles fatal
system-error conditions. System processing is transferred to this component when a fatal
error occurs. The routine then creates an appropriate ASCII error message. This serves to
inform the user about the type of error. The system is then trapped by an infinite loop.
Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed information
about Error Management.

Error Files

The Error Component (ER) consists of four files. Each source file of the Error
Component is defined below.

File Description

ER_EXTR H All external interfaces to the ER are defined in this file.

ERC. C This file contains the core function of the ER. The function that
handles the basic system error service is defined in this file.

ERD. C Global data structures for the ER are defined in this file.

ERI.C This file contains the initialization function for the ER.

201

Nucleus PLUS Internals

Error Data Structures

Error Codes

Nucleus PLUS errors are detected through the use of error codes. When the system
determines an error condition exists, it determines the type of error through the use of an
error code. The error code value is placed in the variable ERD _Error_Code. Nucleus
PLUS error codes are listed below.

Code Constant Description

1 NU_ERROR_CREATI NG_TI MER_HI SR | An error occurred creating the
timer HISR.

2 NU_ERROR_CREATI NG_TI MER_TASK | An error occurred creating the
timer task.

3 NU_STACK_OVERFLOW A task or HISR stack overflow
occurred.

4 NU_UNHANDLED | NTERRUPT An interrupt occurred prior to a
LISRregistration.

Error String

Nucleus PLUS reports errors in the form of an ASCII string. This string is built and stored
in the variable ERD Error_String. The contents of this variable
correspond to the ASCII version of the error code that was reported by the system when the
error occurred. This string is only produced if the conditional compilation flag
NU ERROR STRING was wused to compile ERD.C, ER.C, and ERCC
inclusively.

Error Functions

The following sections provide a brief description of the functions in the Error
Component (ER). Review of the actual source code is recommended for further
information.

ERC System Error

This function processes system errors detected by various system components.
Typically an error of this type is considered fatal.

VO D ERC System Error(INT error_code)

Functions Called
None

202

Chapter 4 - Component Descriptions

ERI Initialize

This function initializes the data structures of the Error Management Component.
VO D ER _Initialize(VO D)

Functions Called
None

License Component (L)

The License Component (LI) is responsible for processing all Nucleus PLUS License
facilities. The Nucleus PLUS License Component is a common License handling routine
that stores and reports information about the customer license and the customer’s serial
number. Please see Chapter 3 of the Nucleus PLUS Reference Manual for more detailed
information about License Management.

License Files

The License Component (LI) consists of two files. FEach source file of the License
Component is defined below.

File Description

LICC This file contains the core function of the LI. The function that
handles the basic system license reporting service is defined in
this file.

LID. C Global data structures for the LI are defined in this file.

License Data Structures

License String

Nucleus PLUS reports Licenses in the form of an ASCII string. This string is stored in the
variable LI D_Li cense_String. The contents of this variable include customer license
information and the customer’s serial number.

License Functions

The following sections provide a brief description of the functions in the License
Component (LI). Review of the actual source code is recommended for further
information.

203

Nucleus PLUS Internals

LI C Li cense_I nfornmation

This function returns a pointer to the license information string. The information string
identifies the customer and product line Nucleus PLUS is licensed for.

CHAR *LI C License_| nformati on(VO D)

Functions Called
None

Release Component (RL)

The Release Component (RL) is responsible for processing all Nucleus PLUS Release
facilities. The Nucleus PLUS Release Component is a routine that is dedicated to storing and
reporting release information. This information includes the current version and release
number of the Nucleus PLUS software. Please see Chapter 3 of the Nucleus PLUS Reference
Manual for more detailed information about Release Management.

Release Files

The Release Component (RL) consists of two files. Each source file of the Release
Component is defined below.

File Description

RLC. C This file contains the core function of the RL. The
function that handles the basic system release reporting
service is defined in this file.

RLD. C Global data structures for the RL are defined in this file.

Release Data Structures

Release String

Nucleus PLUS reports Releases in the form of an ASCII string. This string is stored in the
variable RLD Rel ease_Stri ng. This variable contains a description of the current release
of the Nucleus PLUS software.

Special String

Nucleus PLUS reports miscellaneous information in the form of an ASCII string. This
string is stored in the variable RLD Speci al _Stri ng. This variable contains information
about the origins of the Nucleus PLUS system.

204

Chapter 4 - Component Descriptions

Release Functions

The following sections provide a brief description of the functions in the Release
Component (RL). Review of the actual source code is recommended for further
information.

RLC Rel ease_Information

This function returns a pointer to the release information string. The information string
identifies the current version of Nucleus PLUS.

CHAR *RLC Rel ease_| nformati on(VA D)

Functions Called
None

205

Nucleus PLUS Internals

A

Accelerated Technology®
Embedded Systems Division of

nior
IS

Gra

206

Nucleus PLUS

Constants

Nucleus PLUS Internals

This appendix contains all Nucleus PLUS constants referenced in Chapter 4 (Nucleus PLUS
Services) of the Reference Manual. The constants are first listed alphabetically and then by

value.

Nucleus PLUS Constants (Alphabetical)

Name Decimal Value Hex Value
NU_ALLOCATE _MEMORY_I D 47 2F
NU_ALLOCATE PARTI TI ON_ | D 43 2B
NU_AND 2 2
NU_AND_CONSUVE 3 3
NU_BROADCAST_TO MAI LBOX_I D 16 10
NU_BROADCAST _TO PI PE_I D 30 1E
NU_BROADCAST_TO QUEUE | D 23 17
NU_CHANGE_PREEMPTI ON_| D 11 B
NU_CHANGE_PRI ORI TY_I D 10 A
NU_CHANGE TI ME SLICE I D 65 41
NU_CONTROL_SI GNALS_| D 49 31
NU_CONTROL_TI MER | D 58 3A
NU_CREATE_DRI VER | D 60 3C
NU_CREATE_EVENT_GROUP_I D 37 25
NU_CREATE_HI SR | D 54 36
NU_CREATE_MAI LBOX_| D 12 C
NU_CREATE_MEMORY_POOL_I D 45 2D
NU_CREATE_PARTI TI ON_POOL_I D 41 29
NU_CREATE_PI PE_I D 25 19
NU_CREATE_QUEUE_I D 18 12
NU_CREATE_SEMAPHORE | D 32 20
NU_CREATE_TASK_I D 2 2
NU_CREATE_TI MER | D 56 38
NU_DEALLOCATE_MEMORY_I D 48 30
NU_DEALLOCATE_PARTI TION I D 44 2C
NU_DELETE_DRI VER | D 61 3D
NU_DELETE_EVENT_GROUP_I D 38 26
NU DELETE HI SR | D 55 37
NU_DELETE_MAI LBOX_| D 13 D
NU_DELETE_MEMORY_POOL_I D 46 2E
NU DELETE_PARTI TI ON_POOL_I D 42 2A
NU_DELETE_PI PE_I D 26 1A
NU_DELETE_QUEUE_I D 19 13
NU_DELETE_SEMAPHORE | D 33 21
NU_DELETE_TASK_I D 3 3
NU _DELETE_TI MER | D 57 39
NU_DI SABLE_| NTERRUPTS [Port Specific]

NU_DI SABLE TI MER 4 4
NU_DRI VER SUSPEND 10 A
NU_ENABLE_| NTERRUPTS [Port Specific]

NU ENABLE TI MER 5 5
NU END_OF _LOG -1 FFFFFFFFE
NU_EVENT_SUSPEND 7 7
NU_FALSE 0 0
NU_FI FO 6 6
NU_FI NI SHED 11 B
NU_FI XED S| ZE 7 7

208

Appendix A - Nucleus PLUS Constants

NU_GROUP_DELETED -2 FFFFFEFE
NU_I NVALI D_DELETE -3 FFFFFFFD
NU_I NVALI D_DRI VER -4 FFFFFFFC
NU_I NVALI D_ENABLE -5 FFFFFFFB
NU_I NVALI D_ENTRY -6 FEEEFEEA
NU_I NVALI D_FUNCTI ON -7 FFFFFFFQ
NU_I NVALI D_GROUP -8 FFFFFFFS
NU_I NVALI D_HI SR -9 FFFFFFF7
NU_I NVALI D_NAI LBOX -10 FFFFFFF6
NU_I NVALI D_MEMORY -11 FFFFFFF5
NU_I NVALI D_MESSAGE -12 FFFFFFF4
NU_I NVALI D_COPERATI ON -13 FFFFFFF3
NU_I NVALI D_PI PE -14 FFFFFFF2
NU_I NVALI D_PO NTER -15 FFFFFFF1
NU_I NVALI D_POOL -16 FFFFFFFO
NU_I NVALI D_PREENMPT -17 FFFFFFEF
NU_INVALID PRIORITY -18 FFFFFFEE
NU_I NVALI D_QUEUE -19 FFFFFFED
NU_I NVALI D_RESUMVE -20 FFFFFFEC
NU_I NVALI D_SEMAPHORE -21 FFFFFFEB
NU_I NVALI D_SI ZE -22 FFFFFFEA
NU_I NVALI D_START -23 FFFFFFEQ
NU_I NVALI D_SUSPEND -24 FFFFFFES
NU_I NVALI D_TASK -25 FFFFFFE7
NU_I NVALI D_TI MER 3 FFFFFFEG
NU_I NVALI D_VECTOR - 27 FFFFFFES
NU_NAI LBOX_DELETED -28 FFFFFFE4
NU_MNAI LBOX_EMPTY -29 FFFFFFE3
NU_MAI LBOX_FULL -30 FFFFFFE2
NU_MAI LBOX_RESET -31 FFFFFFEL
NU_NAI LBOX_SUSPEND 3 3
NU_MEMORY_ SUSPEND 9 9
NU_NO_MEMORY -32 FFFFFFEQ
NU_NO MORE LI SRS -33 FFFFFFEDF
NU_NO_PARTI TI ON -34 FFFFFFDE
NU_NO_PREEMPT 8 8
NU_NO_START 9 9
NU_NO_SUSPEND 0 0
NU_NOT_DI SABLED -35 FFFFFFDD
NU_NOT_PRESENT -36 FFFFFFDC
NU_NOT_REGQ STERED -37 FFFFFFDB
NU_NOT_TERM NATED -38 FFFFFFDA
NU_NULL 0 0
NU_OBTAI N_SEMAPHORE | D 35 23

NU_OR 0 0
NU_OR_CONSUME 1 1
NU_PARTI TI ON_SUSPEND 8 8

NU_PI PE_DELETED -39 FFFFFFD9
NU_PI PE_EMPTY -40 FFFFFFDS
NU_PI PE_FULL -41 FFFFFFD7
NU_PI PE_RESET -42 FFFFFFD6
NU_PI PE_SUSPEND 5 5
NU_POOL_DELETED -43 FFFFFFD5
NU_PREENMPT 10 A

NU_PRI ORI TY 11 B
NU_PURE_SUSPEND 1 1

209

Nucleus PLUS Internals

NU_QUEUE_DELETED -44 FFFFFFD4
NU_QUEUE_EMPTY =45 FFFFFFD3
NU QUEUE_FULL -46 FFFFFFD2
NU_QUEUE_RESET 47 FFFFFFDL
NU_QUEUE_SUSPEND 4 4
NU_READY 0 0
NU_RECEI VE_FROM VAl LBOX_| D 17 11
NU_RECEI VE_FROM PI PE_| D 31 1F
NU_RECEI VE_FROM QUEUE_I D 24 18
NU_RECEI VE_SI GNALS_I D 50 32

NU REG STER LI SR I D 53 35
NU_REG STER S| GNAL_HANDLER | D 51 33
NU_RELEASE_SEMAPHORE_| D 36 24
NU_RELI NQUI SH I D 8 8
NU_REQUEST DRI VER | D 62 3E

NU RESET_MAI LBOX_| D 14 E

NU RESET_PI PE_I D 27 1B

NU RESET_QUEUE | D 20 14
NU_RESET_SEMAPHORE_| D 34 22
NU_RESET_TASK_I D 4 4
NU_RESET_TI NER | D 59 3B

NU RESUME DRI VER | D 63 3F

NU RESUME_TASK_| D 6 6

NU _RETRI EVE_EVENTS_I D 40 28
NU_SEMAPHORE _DELETED 48 FFFFFFD0
NU_SEMAPHORE_RESET -49 FFFFFFCF
NU_SEMAPHORE_SUSPEND 6 6
NU_SEND_SI GNALS_| D 52 34

NU SEND TO FRONT_OF QUEUE_I D 21 15
NU_SEND TO FRONT_COF _PI PE | D 28 1C
NU_SEND_TO NMAI LBOX_I D 15 F
NU_SEND_TO PI PE_I D 29 1D
NU_SEND_TO QUEUE | D 22 16
NU_SET_EVENTS I D 39 27

NU SLEEP I D 9 9
NU_SLEEP_SUSPEND 2 2
NU_START 12 C
NU_SUCCESS 0 0
NU_SUSPEND OxFFFFFFFFUL FFFFFFFF
NU_SUSPEND_DRI VER | D 64 40
NU_SUSPEND_TASK_I D 7 7
NU_TERM NATE_TASK_| D 5 5
NU_TERM NATED 12 C

NU_TI NEOUT =50 FFFFFFCE
NU_TRUE 1 1
NU_UNAVAI LABLE -51 FFFFFFCD
NU _USER | D 1 1

NU VAR ABLE_SI ZE 13 D

210

Appendix A - Nucleus PLUS Constants

Nucleus PLUS Constants (Value)

Name Decimal Value Hex Value
NU_ENABLE | NTERRUPTS Port Specific
NU_DI SABLE | NTERRUPTS Port Specific
NU_FALSE 0
NU_NO_ SUSPEND 0
NU_NULL 0
NU OR

0

NU_READY

NU_SUCCESS
NU_OR_CONSUMVE
NU_PURE_SUSPEND
NU_TRUE

NU USER | D

NU_AND
NU_CREATE_TASK_ | D
NU_SLEEP_SUSPEND
NU_AND CONSUNVE

NU _DELETE TASK | D
NU_MAI LBOX_SUSPEND
NU DI SABLE_TI MER
NU_QUEUE_SUSPEND

NU RESET_TASK I D
NU_ENABLE_TI MER

NU_PI PE_SUSPEND
NU_TERM NATE_TASK_ | D
NU_FI FO

NU_RESUVE TASK | D
NU_SEVMAPHORE SUSPEND
NU_EVENT_SUSPEND
NU_FI XED S| ZE
NU_SUSPEND TASK | D
NU_NO PREEMPT
NU_PARTI TI ON_SUSPEND
NU RELINQUI SH I D
NU_MEMORY_SUSPEND

o|o(o|o

©|w©|w©|mw|o|o|~N|~|~|o|o|o|u|o|o| s S| S wlw|lw[nN N k] Rk k| oo

Tim|lo|olo|o|o|m|m|m| > x| 3| ©|©|w©|m|o|m|N|~|~|o|o|o|v|a| v s & & w|w|w| N[Nk R k| R oo

NU_NO_START

NU SLEEP I D

NU_CHANGE PRI ORI TY_I D 10

NU DRI VER_SUSPEND 10

NU_PREENPT 10

NU_CHANGE_PREENPTI ON_| D 11

NU_FI NI SHED 11

NU_PRI ORI TY 11

NU_CREATE_MAI LBOX_| D 12

NU_START 12

NU_TERM NATED 12

NU_DELETE_MAI LBOX_| D 13

NU_VARI ABLE_SI ZE 13

NU_RESET_MAI LBOX_I D 14

NU_SEND _TO MAI LBOX_I D 15

NU_BROADCAST TO _MAI LBOX_| D 16 10
NU_RECEI VE_FROM VAl LBOX_I D 17 11

NU CREATE_QUEUE_I D 18 12

211

Nucleus PLUS Internals

NU _DELETE_QUEUE_I D 19 13
NU_RESET_QUEUE_| D 20 14
NU_SEND TO FRONT_OF QUEUE_I D 21 15
NU_SEND TO QUEUE | D 22 16
NU_BROADCAST TO QUEUE_I D 23 17
NU_RECEI VE_FROM QUEUE_I D 24 18
NU_CREATE Pl PE_I D 25 19
NU _DELETE Pl PE_| D 26 1A
NU RESET_PI PE_I D 27 1B
NU_SEND TO FRONT_OF Pl PE | D 28 1C
NU_SEND _TO PI PE_I D 29 1D
NU_BROADCAST_TO PI PE_| D 30 1E
NU_RECEI VE_FROM PI PE_| D 31 1F
NU_CREATE_SEMAPHORE | D 32 20
NU DELETE_SEMAPHORE | D 33 21
NU RESET_SEMAPHORE_| D 34 22
NU_OBTAI N_SEMAPHORE | D 35 23
NU_RELEASE_SEMAPHORE | D 36 24
NU_CREATE_EVENT_GROUP_I D 37 25
NU_DELETE_EVENT _GROUP_I D 38 26
NU_SET_EVENTS | D 39 27
NU RETRI EVE_EVENTS_I D 40 28
NU_CREATE_PARTI TI ON_POOL_I D a1 29
NU_DELETE PARTI TI ON_POOL_| D 12 2A
NU_ALLOCATE_PARTI TI ON_I D 43 2B
NU_DEALLOCATE_PARTI TI ON_I D 44 2C
NU_CREATE_MEMORY_POOL_I D 45 2D
NU DELETE_MEMORY POOL_I D 16 2E
NU_ALLOCATE_MENDRY_| D 47 2F
NU_DEALLOCATE_NEMORY_| D 18 30
NU_CONTROL_SI GNALS_I D 49 31
NU_RECEI VE_SI GNALS_I D 50 32
NU_REG STER S| GNAL_HANDLER | D 51 33
NU_SEND_SI GNALS_I D 52 34
NU REG STER LI SR | D 53 35
NU CREATE HI SR | D 54 36
NU DELETE HI SR | D 55 37
NU_CREATE_TI MER I D 56 38
NU _DELETE TI MER I D 57 39
NU_CONTROL_TI MER | D 58 3A
NU RESET_TI NER | D 59 3B
NU_CREATE DRI VER | D 60 3C
NU DELETE DRI VER | D 61 3D
NU_REQUEST DRI VER | D 62 3E
NU_RESUME_DRI VER | D 63 3F
NU_SUSPEND_DRI VER | D 64 40
NU_CHANGE TI ME_SLI CE 65 a1
NU_SUSPEND OXFFFFFFFFUL FFFFFFFF
NU END OF LOG -1 FFFFFFFF
NU_GROUP_DELETED -2 FFFFFFFE
NU_| NVALI D DELETE -3 FFFFFFFD
NU_| NVALI D_DRI VER -4 FFFFFFFC
NU_| NVALI D_ENABLE -5 FFFFFFFB
NU_| NVALI D_ENTRY -6 FFFFFFFA
NU_I NVALI D_FUNCTI ON -7 FFFFFFF9
NU_| NVALI D_GROUP -8 FFFFFFF8

212

Appendix A - Nucleus PLUS Constants

NU_I NVALI D_HI SR -9 FFFFFFF7
NU | NVALI D_MAI LBOX -10 FFFFFFF6
NU_I NVALI D_MEMORY -11 FFFFFFF5
NU_I NVALI D_MESSAGE -12 FFFFFFF4
NU_I NVALI D_OPERATI ON -13 FFFFFFF3
NU_ | NVALI D _PI PE -14 FFFFFFF2
NU_| NVALI D PO NTER -15 FFEFFFF1
NU_I NVALI D_POOL -16 FFFFFFFO
NU_I NVALI D_PREENPT -17 FFFFFFEF
NU_I NVALI D_PRIORITY -18 FFFFFFEE
NU_I NVALI D QUEUE -19 FFFFFFED
NU_| NVALI D RESUVE -20 FFFFFFEC
NU_I NVALI D_SEMAPHORE -21 FFFFFFEB
NU_I NVALI D_SI ZE -22 FEEFFEEA
NU_I NVALI D_START -23 FFFFFFEQ
NU_I NVALI D_SUSPEND -24 FFFFFFES
NU_I NVALI D_TASK -25 FFFFFFE7
NU_I NVALI D_TI MER -26 FFFFFFEG
NU_| NVALI D VECTOR - 27 FFEFFFES
NU_MAI LBOX_DELETED -28 FFEFEFFE4
NU_MAI LBOX_EMPTY - 29 FFFFFFE3
NU_MAI LBOX_FULL -30 FEEEFFE2
NU_MAI LBOX_RESET -31 FFFFFFEL
NU_NO_MEMORY -32 FFFFFFEQ
NU_NO MORE LI SRS -33 FFFFFFDF
NU_NO _PARTI Tl ON -34 FFFFFFDE
NU_NOT_DI SABLED -35 FFFFFFDD
NU_NOT_PRESENT -36 FFFFFFDC
NU_NOT_REGQ STERED -37 FFFFFFDB
NU_NOT_TERM NATED -38 FFFFFFDA
NU_PI PE_DELETED -39 FFEFFFDO
NU_PI PE_EMPTY - 40 FFFFFFD8
NU_PI PE_FULL -41 FFFFFFD7
NU_PI PE_RESET -42 FFFFFFD6
NU_POOL_DELETED -43 FFFFFFD5
NU_QUEUE_DELETED -44 FFFFFFD4
NU_QUEUE_EMPTY -45 FFFFFFD3
NU_QUEUE_FULL -46 FFFFFFD2
NU_QUEUE_RESET -47 FFFFFFDL
NU_SEMAPHORE DELETED -48 FFEFFFDO
NU_SEVAPHORE_RESET -49 FFFFFFCF
NU_TI MEQUT -50 FFFFFFCE
NU_UNAVAI LABLE -51 FFFFFFCD

213

Nucleus PLUS Internals

A

Accelerated Technology®
Embedded Systems Division of

Gra n%;

214

Fatal System
Errors

Nucleus PLUS Internals

This appendix contains all Nucleus PLUS fatal system error constants. If a fatal system
error occurs, one of these constants is passed to the fatal error handling function,

ERC _System Error.

If the system error is NU_STACK_OVERFLOW the currently executing thread’s stack is
too small. The current thread can be identified by examination of the global variable
TCD _Current _Thread. This contains the pointer to the current thread’s control

block.

If the system error is NU_UNHANDLED | NTERRUPT, an interrupt was received that does
not have an associated LISR. The interrupt vector number that caused the system error is

stored in the global variable TCD_Unhandl ed_I nt errupt.

Nucleus PLUS Fatal System Errors

Name Decimal Value Hex Value
NU_ERROR_CREATI NG_TI MER_HI SR 1 1
NU_ERROR_CREATI NG_TI MER_TASK 2 2
NU_STACK_ OVERFLOW 3 3
NU_UNHANDLED | NTERRUPT 4 4

216

/O Driver

Structure
Requests

Nucleus PLUS Internals

This appendix contains all standard Nucleus PLUS I/O driver constants and request
structures. Chapters 3 and 5 of the Nucleus PLUS Reference Manual discuss usage of
I/O drivers.

Nucleus PLUS I/O Driver Constants

Name Decimal Value Hex Value
NU_| O ERROR -1 FFFFFFFF
NU_I NI TI ALI ZE 1 1
NU_ASSI GN 2 2
NU_RELEASE 3 3
NU_I NPUT 4 4
NU_OUTPUT 5 5
NU_STATUS 6 6
NU_TERM NATE 7 7

Nucleus PLUS I/O Driver C Structures

/* Define I/O driver request structures. */

struct NU_I NI TI ALI ZE_STRUCT

{
VO D *nu_i o_addr ess; /* Base | O address */
UNSI GNED nu_| ogi cal _units; /* Nunber of |ogical units */
VO D *nu_menory; /* Ceneric nmenory pointer */
I NT nu_vector; /* Interrupt vector number */

IE

struct NU_ASS|I GN_STRUCT

{
UNSI GNED nu_| ogi cal _uni t; /* Logical unit nunber */
I NT nu_assi gn_i nf o; /* Additional assign info */

IE

struct NU_RELEASE STRUCT

{
UNSI GNED nu_| ogi cal _uni t; /* Logical unit nunber */
I NT nu_rel ease_i nf o; /* Additional release info */

IE

struct NU_I NPUT_STRUCT

{
UNSI GNED nu_| ogi cal _uni t; /* Logical unit nunber */
UNSI GNED nu_of f set ; /* Offset of input */
UNSI GNED nu_r equest _si ze; /* Requested input size */
UNSI GNED nu_act ual _si ze; /* Actual input size */
VO D *nu_buffer_ptr; /* I nput buffer pointer */

IE

218

Appendix C - 1/O Driver Structure Requests

struct NU_OUTPUT_STRUCT

{
UNSI GNED nu_| ogi cal _uni t; /* Logical unit nunber */
UNSI GNED nu_of f set ; /* Offset of output */
UNSI GNED nu_r equest _si ze; /* Requested output size */
UNSI GNED nu_act ual _si ze; /* Actual output size */
VA D *nu_buffer_ptr; /* Qutput buffer pointer */
iE
struct NU_STATUS_STRUCT
{
UNSI GNED nu_|l ogi cal _uni t; /* Logical unit nunber */
VA D *nu_extra_status; /* Additional status ptr */
IE
struct NU _TERM NATE_STRUCT
UNSI GNED nu_| ogi cal _unit; /* Logical unit nunber */
iE
typedef struct NU_ DRI VER REQUEST_STRUCT
{
I NT nu_functi on; /* 1/0O request function */
UNSI GNED nu_ti neout ; /* Ti meout on request */
STATUS nu_st at us; /* Status of request */
UNSI GNED nu_suppl erent al ; /* Suppl enental information */
VO D *nu_suppl emrent al _ptr; /* Suppl enental info pointer*/

/* Define a union of all the different types of request
structures. */

uni on NU_REQUEST_| NFO_UNI ON

{
struct NU INTIALIZE STRUCT nu_initialize;
struct NU_ASS|I GN_STRUCT nu_assi gn;
struct NU_RELEASE STRUCT nu_r el ease;
struct NU_I NPUT_STRUCT nu_i nput;
struct NU_QOUTPUT_STRUCT nu_out put ;
struct NU_STATUS_STRUCT nu_st at us;
struct NU TERM NATE_STRUCT nu_t er m nat e;

} nu_r equest _i nf o;

} NU_DRI VER REQUEST;

219

Nucleus PLUS Internals

AN

Accelerated Technology®
Embedded Systems Division of

Gra n!?s':

220

	Chapter 1 - Introduction
	Purpose of Manual
	About Nucleus PLUS
	Nucleus PLUS Construction

	Chapter 2 – Implementation Conventions
	Components
	Component Composition
	Format
	Prologue
	After the Prologue
	Remainder of File

	Naming Conventions
	Component Names
	#define Names
	Structure Names
	Typedef Names
	Structure Member Names
	Global Variable Names
	Local Variable Names
	Function Names

	Indentation
	Comments

	Chapter 3 – Software Overview
	Basic Usage
	Operation Mode
	Application Initialization
	Include File

	Data Types
	Service Call Mapping
	Error Checking
	No Error Checking
	Conditional Compilation
	Library Conditional Flags
	Library Conditional Values
	Application Conditional Flags

	Environment Dependencies
	Initialization
	Thread Control
	Timer Management
	Nucleus PLUS Include File

	Version Control

	Chapter 4 – Component Descriptions
	Common Services Component (CS)
	Common Services Files
	Common Services Control Block
	Common Services Functions
	CSC_Place_On_List
	CSC_Priority_Place_On_List
	CSC_Remove_From_List

	Initialization Component (IN)
	Initialization Files
	Initialization Functions
	INC_Initialize
	INT_Initialize
	INT_Vectors_Loaded
	INT_Setup_Vector

	Thread Control Component (TC)
	Thread Control Files
	Thread Control Data Structures
	Thread Control Functions
	TCC_Create_Task
	TCC_Delete_Task
	TCC_Create_HISR
	TCC_Delete_HISR
	TCC_Reset_Task
	TCC_Terminate_Task
	TCC_Resume_Task
	TCC_Resume_Service
	TCC_Suspend_Task
	TCC_Suspend_Service
	TCC_Task_Timeout
	TCC_Task_Sleep
	TCC_Relinquish
	TCC_Time_Slice
	TCC_Current_Task_Pointer
	TCC_Current_HISR_Pointer
	TCC_Task_Shell
	TCC_Signal_Shell
	TCC_Dispatch_LISR
	TCC_Register_LISR
	TCCE_Create_Task
	TCCE_Create_HISR
	TCCE_Delete_HISR
	TCCE_Delete_Task
	TCCE_Reset_Task
	TCCE_Terminate_Task
	TCCE_Resume_Service
	TCCE_Suspend_Service
	TCCE_Relinquish
	TCCE_Task_Sleep
	TCCE_Suspend_Error
	TCCE_Activate_HISR
	TCCE_Validate_Resume
	TCF_Established_Tasks
	TCF_Established_HISRs
	TCF_Task_Pointers
	TCF_HISR_Pointers
	TCF_Task_Information
	TCF_HISR_Information
	TCI_Initialize
	TCS_Change_Priority
	TCS_Change_Preemption
	TCS_Change_Time_Slice
	TCS_Control_Signals
	TCS_Receive_Signals
	TCS_Register_Signal_Handler
	TCS_Send_Signals
	TCSE_Change_Priority
	TCSE_Change_Preemption
	TCSE_Change_Time_Slice
	TCSE_Control_Signals
	TCSE_Receive_Signals
	TCSE_Register_Signal_Handler
	TCSE_Send_Signals
	TCT_Control_Interrupts
	TCT_Local_Control_Interrupts
	TCT_Restore_Interrupts
	TCT_Build_Task_Stack
	TCT_Build_HISR_Stack
	TCT_Build_Signal_Frame
	TCT_Check_Stack
	TCT_Schedule
	TCT_Control_To_Thread
	TCT_Control_To_System
	TCT_Signal_Exit
	TCT_Current_Thread
	TCT_Set_Execute_Task
	TCT_Protect
	TCT_Unprotect
	TCT_Unprotect_Specific
	TCT_Set_Current_Protect
	TCT_Protect_Switch
	TCT_Schedule_Protected
	TCT_Interrupt_Context_Save
	TCT_Interrupt_Context_Restore
	TCT_Activate_HISR
	TCT_HISR_Shell
	TCT_Check_For_Preemption

	Timer Component (TM)
	Timer Files
	Timer Data Structures

	Active Timers List
	Timer Functions
	TMC_Init_Task_Timer
	TMC_Start_Task_Timer
	TMC_Stop_Task_Timer
	TMC_Start_Timer
	TMC_Stop_Timer
	TMC_Timer_HISR
	TMC_Timer_Expiration
	TMF_Established_Timers
	TMF_Get_Remaining_Time
	TMF_Timer_Pointers
	TMF_Timer_Information
	TMI_Initialize
	TMS_Create_Timer
	TMS_Delete_Timer
	TMS_Reset_Timer
	TMS_Control_Timer
	TMSE_Create_Timer
	TMSE_Delete_Timer
	TMSE_Reset_Timer
	TMSE_Control_Timer
	TMT_Set_Clock
	TMT_Retrieve_Clock
	TMT_Read_Timer
	TMT_Enable_Timer
	TMT_Adjust_Timer
	TMT_Disable_Timer
	TMT_Retrieve_TS_Task
	TMT_Timer_Interrupt

	Mailbox Component (MB)
	Mailbox Files
	Mailbox Data Structures
	Mailbox Functions
	MBC_Create_Mailbox
	MBC_Delete_Mailbox
	MBC_Send_To_Mailbox
	MBC_Receive_From_Mailbox
	MBC_Cleanup
	MBCE_Create_Mailbox
	MBCE_Delete_Mailbox
	MBCE_Send_To_Mailbox
	MBCE_Receive_From_Mailbox
	MBF_Established_Mailboxes
	MBF_Mailbox_Pointers
	MBF_Mailbox_Information
	MBI_Initialize
	MBS_Reset_Mailbox
	MBS_Broadcast_To_Mailbox
	MBSE_Reset_Mailbox
	MBSE_Broadcast_To_ Mailbox

	Queue Component (QU)
	Queue Files
	Queue Data Structures

	Queue Control Block
	Queue Suspension Structure
	Queue Functions
	QUC_Create_Queue
	QUC_Delete_Queue
	QUC_Send_To_Queue
	QUC_Receive_From_Queue
	QUC_Cleanup
	QUCE_Create_Queue
	QUCE_Delete_Queue
	QUCE_Send_To_Queue
	QUCE_Receive_From_Queue
	QUF_Established_Queues
	QUF_Queue_Information
	QUF_Queue_Pointers
	QUI_Initialize
	QUS_Reset_Queue
	QUS_Send_To_Front_Of_Queue
	QUS_Broadcast_To_Queue
	QUSE_Reset_Queue
	QUSE_Send_To_Front_Of_Queue
	QUSE_Broadcast_To_Queue

	Pipe Component (PI)
	Pipe Files
	Pipe Data Structures
	Pipe Functions
	PIC_Create_Pipe
	PIC_Delete_Pipe
	PIC_Send_To_Pipe
	PIC_Receive_From_Pipe
	PIC_Cleanup
	PICE_Create_Pipe
	PICE_Delete_Pipe
	PICE_Send_To_Pipe
	PICE_Receive_From_Pipe
	PIF_Established_Pipes
	PIF_Pipe_Information
	PIF_Pipe_Pointers
	PII_Initialize
	PIS_Reset_Pipe
	PIS_Send_To_Front_Of_Pipe
	PIS_Broadcast_To_Pipe
	PISE_Reset_Pipe
	PISE_Send_To_Front_Of_Pipe
	PISE_Broadcast_To_Pipe

	Semaphore Component (SM)
	Semaphore Files
	Semaphore Data Structures
	Semaphore Functions
	SMC_Create_Semaphore
	SMC_Delete_Semaphore
	SMC_Obtain_Semaphore
	SMC_Release_Semaphore
	SMC_Cleanup
	SMCE_Create_Semaphore
	SMCE_Delete_Semaphore
	SMCE_Obtain_Semaphore
	SMCE_Release_Semaphore
	SMF_Established_Semaphores
	SMF_Semaphore_Pointers
	SMF_Semaphore_Information
	SMI_Initialize
	SMS_Reset_Semaphore
	SMSE_Reset_Semaphore

	Event Group Component (EV)
	Event Group Files
	Event Group Data Structures
	Created Event Group List
	Created Event Group List Protection
	Total Event Groups
	Event Group Control Block
	Event Group Suspension Structure
	Event Group Functions
	EVC_Create_Event_Group
	EVC_Delete_Event_Group
	EVC_Set_Events
	EVC_Retrieve_Events
	EVC_Cleanup
	EVCE_Create_Event_Group
	EVCE_Delete_Event_Group
	EVCE_Set_Events
	EVCE_Retrieve_Events
	EVF_Established_Event_Groups
	EVF_Event_Group_Pointers
	EVF_Event_Group_Information
	EVI_Initialize

	Partition Memory Component (PM)
	Partition Memory Files
	Partition Memory Data Structures
	Partition Memory Functions
	PMC_Create_Partition_Pool
	PMC_Delete_Partition_Pool
	PMC_Allocate_Partition
	PMC_Deallocate_Partition
	PMC_Cleanup
	PMCE_Create_Partition_Pool
	PMCE_Delete_Partition_Pool
	PMCE_Allocate_Partition
	PMCE_Deallocate_Partition
	PMF_Established_Partition_Pools
	PMF_Partition_Pool_Pointers
	PMF_Partition_Pool_Information
	PMI_Initialize

	Dynamic Memory Component (DM)
	Dynamic Memory Files
	Dynamic Memory Data Structures
	Dynamic Memory Functions
	DMC_Create_Memory_Pool
	DMC_Delete_Memory_Pool
	DMC_Allocate_Memory
	DMC_Deallocate_Memory
	DMC_Cleanup
	DMCE_Create_Memory_Pool
	DMCE_Delete_Memory_Pool
	DMC_Allocate_Memory
	DMC_Deallocate_Memory
	DMC_Cleanup
	DMCE_Create_Memory_Pool
	DMCE_Delete_Memory_Pool
	DMCE_Allocate_Memory
	DMCE_Deallocate_Memory
	DMF_Established_Memory_Pools
	DMF_Memory_Pool_Pointers
	DMF_Memory_Pool_Information
	DMI_Initialize

	Input/Output Driver Component (IO)
	Input/Output Driver Files
	Input/Output Data Structures

	Total Input/Output Drivers
	Input/Output Driver Functions
	IOC_Create_Driver
	IOC_Delete_Driver
	IOC_Request_Driver
	IOC_Resume_Driver
	IOC_Suspend_Driver
	IOCE_Create_Driver
	IOCE_Delete_Driver
	IOCE_Request_Driver
	IOCE_Resume_Driver
	IOCE_Suspend_Driver
	IOF_Established_Drivers
	IOF_Driver_Pointers
	IOI_Initialize

	History Component (HI)
	History Files
	History Data Structures
	History Functions
	HIC_Disable_History_Saving
	HIC_Enable_History_Saving
	HIC_Make_History_Entry_Service
	HIC_Make_History_Entry
	HIC_Retrieve_History_Entry
	HII_Initialize

	Error Component (ER)
	Error Files
	Error Data Structures
	Error Functions
	ERC_System_Error
	ERI_Initialize

	License Component (LI)
	License Files
	License Data Structures
	License Functions
	LIC_License_Information

	Release Component (RL)
	Release Files
	Release Data Structures
	Release Functions
	RLC_Release_Information

	Appendix A – Nucleus PLUS Constants
	Appendix B – Fatal System Errors
	Appendix C – I/O Driver Structure Requests
	Nucleus PLUS Internals

